| C | 1 | | |---|---|---| | Ĺ | U | l | | į | 3 | | | 1 | Ī | | | | ture of Invigilators PHYSICAL SCIENCE | Roll No. | |----------------|--|---| | | PHYSICAL SCIENCE Paper II | (In figures as in Admit Card) Roll No | | | | (In words) | | JΥ | 04/2 | | | | Name of the | Areas/Section (if any) | | Time | Allowed: 75 Minutes] | [Maximum Marks: 100 | | l.
2.
3. | Write your Roll Number in the space provided on the top
This paper consists of <i>fifty</i> (50) multiple choice type quest
Each item has upto four alternative responses marked (A), to
be a capital letter for the selected option. The answer letter
the corresponding square. | ions. All questions are compulsory. (B), (C) and (D). The answer should | | | Correct method A Wrong Method A or A | · · · · · · · · · · · · · · · · · · · | | 1. | Your responses to the items for this paper are to be indicat paper II only. | ed on the ICR Answer Sheet under | | 5.
6. | Read instructions given inside carefully. | | | 7. | One sheet is attached at the end of the booklet for rough
You should return the test booklet to the invigilator at the
any paper with you outside the examination hall. | | | પરાક્ષ | ાર્થીઓ માટેની સૂચનાઓ : | · | | i.
2.
3. | આ પાનાની ટોચમાં દર્શાવેલી જગ્યામાં તમારો રોલ નંબર લખો.
આ પ્રશ્નપત્રમાં કુલ પચાસ (50) બહુવૈકલ્પિક ઉત્તરો ધરાવતા પ્રશ્નો આ
પ્રત્યેક પ્રશ્ન વધુમાં વધુ ચાર બહુવૈકલ્પિક ઉત્તરો ધરાવે છે. જે (A), (B)
પ્રશ્નનો ઉત્તર કેપીટલ સંજ્ઞા વડે આપવાનો રહેશે. ઉત્તરની સંજ્ઞા આપેલ ખા
રહેશે. | . (C) અને <i>(</i> D) વકે દર્શાવવામાં આવ્યા છે. | | | ખરી રીત : 🔼 ખોટી રીત : 🔼 , 🔼 | · | | ٤. | આ પ્રશ્નપત્રના જવાબ આપેલ ICR Answer Sheet ના Paper II વિભ
રહેશે. | ગની નીચે આપેલ ખાનાંઓમાં આપવાના | | ł. | અંદર આપેલ સૂચનાઓ કાળજીપૂર્વક વાંચો. | | | ₹.
Э. | આ બુક્લેટની પાછળ આપેલું પાનું ૨ફ કામ માટે છે.
પરીક્ષા સમય પૂરો થઈ ગયા પછી આ બુક્લેટ જે તે નિરીક્ષકને સોંપી દેવી. | સુરાયા સાગળ મુગ્રામાં મુંદની બનાર વર્લ | | | જવો નહીં. | ગાળ રહા ગામામ મહાલા બહાર લઇ | ## PHYSICAL SCIENCE PAPER-II Note: This paper contains fifty (50) multiple-choice questions. Each question carrying two (2) marks. Attempt All the questions. - The number of independent solutions for third order linear differential equation 1. could be: - (A) (B) 2 (C) 3 (D) 4 - 2. The trace of an N × N unit matrix is: - (A) Zero (B) N^2 (C) 2N (D) N In central force motion, if the force is attractive inverse square then: 3. <K.E.> = <P.E.>(A) (B) $\langle K.E. \rangle = -\langle P.E. \rangle$ $\langle K.E. \rangle = -\frac{1}{2} \langle P.E. \rangle$ (C) (D) $\langle K.E. \rangle = \frac{1}{2} \langle P.E. \rangle$ 4. A satellite in an elliptical orbit around earth has perigee at 500 miles from the surface of earth and apogee at 2000 miles from the surface of earth. Radius of earth = 4000 miles and maximum speed of satellite = 16,000 miles/hour. Then its speed at apogee is: (A) 16,000 miles/hour (B) 14,000 miles/hour (C) 12,000 miles/hour (D) 8.000 miles/hour 5. The potential energy of the body with mass m, constrained to move on a straight line is kx^{μ} , where k is constant. The body moves from x_1 at time t₁ to x₂ at time t₂. Which of the following is an extremum corresponding to this motion? (A) $$\int_{t_1}^{t_2} (\frac{1}{2} mv^2 - kx^4) dt$$ (C) $$\int_{x_1}^{x_2} (\frac{1}{2} mv^2 + kx^4) dt$$ (B) $\int_{t_1}^{t_2} \frac{1}{2} \text{mv}^2 dt$ (D) $\int_{t_1}^{t_2} \text{mxv} dt$ | 6. | Whic | h of the following def | ines a conserva | ative force $\vec{\mathbf{F}}$? | |-----------|--|---|---|--| | | (A) | $\frac{d\vec{F}}{dt} = 0$ | (B) | $\vec{\nabla} \cdot \vec{\mathbf{F}} = 0$ | | | (C) | $\vec{\nabla} \times \vec{F} = 0$ | (D) | $\oint \vec{\mathbf{F}} \cdot d\vec{r} \neq 0$ | | 7. | angu | lar frequency, k is the | wave vector, | is $\omega = \sqrt{c^2k^2 + m^2}$ where ω is the c is the velocity of light and m is vave has the following properties. | | | (A) | $v \rightarrow 0$ as $k \rightarrow 0$ and | $v \rightarrow c$ as $k \rightarrow \infty$ | | | | (B) | $v \rightarrow c$ as $k \rightarrow 0$ and | v →∞ as k → ∘ | • | | | (C) | $v \rightarrow 0$ as $k \rightarrow 0$ and | v→∞ as k→o | · · · · · · · · · · · · · · · · · · · | | | (D) | $v \rightarrow c$ as $k \rightarrow 0$ and | v → c as k → ∝ |) | | 8. | Two particles approach each other with different velocities. After collision, one of them is found to have momentum \vec{p} in their center of mass frame. In the same reference frame, the other particle must have momentum: | | | | | | (A) | zero | (B) | $-\vec{p}/2$ | | | (C) | -p | (D) | $-2\vec{p}$ | | 9. | The | number of independen | t vibrational n | nodes of CO ₂ molecules are : | | | (A) | 2 | (B) | 3 | | | (C) | 4. | (D) | 5 | | 10. | | | | niformly charged cylinder of radius ch a cylinder is described as: | | | (A) | $ \vec{E} \propto r$ for $r < R$ and | $ \vec{E} \propto \frac{1}{r}$ for r | > R. | | | (B) | $\left \overrightarrow{\mathbf{E}} \right \propto \ln \mathbf{r} \text{for } \mathbf{r} < \mathbf{R} \text{as}$ | nd $ \vec{E} \propto \frac{1}{r^2}$ for | r r > R. | | | (C) | E = constant for r < | R and $ \vec{E} \propto \frac{1}{r}$ | for $r > R$. | | | (D) | $ \vec{E} = 0$ for $r < R$ and | $ \vec{E} \propto \frac{1}{r} for r $ | > R. | | Phy. S | Sci.—I | • • | 4 | • | 11. The non-existence of magnetic monopole is a consequence of : (A) $$\overrightarrow{\nabla} \cdot \overrightarrow{J} + \frac{\partial \rho}{\partial t} = 0$$ (B) $$\vec{\nabla} \cdot \vec{\mathbf{B}} = 0$$ (C) $$\overrightarrow{\nabla} \times \overrightarrow{\mathbf{E}} = \overrightarrow{\partial} \overrightarrow{\mathbf{B}} / \overrightarrow{\partial} \mathbf{t}$$ (D) $$\overrightarrow{\nabla} \times \overrightarrow{E} = \overset{\circ}{/}_{\in 0}$$ 12. In a place where electric field \vec{E} and magnetic field \vec{B} are finite. A charged particle projected along the x-axis with speed v, passes undeflected and with uniform speed. We may conclude that: - (A) Such a situation is impossible - (B) x-component of \vec{E} as well of x-component of \vec{B} must be zero - (C) If E is along y-axis, B must be along the z-axis - (D) If \vec{B} is along x-axis, \vec{E} must be along the y-axis 13. A charge Q is kept at the corner of a cube. Then the flux through each side, not containing the charge is: (A) $$\frac{Q}{6\epsilon_0}$$ (B) $$\frac{Q}{3\varepsilon_0}$$ (C) $$\frac{Q}{24\epsilon_0}$$ (D) $$\frac{Q}{\varepsilon_0}$$ 14. Poynting's vector at the surface of a long current carrying wire, with length L, radius R, potential difference V between the ends of the wire and current I is: - (A) Pointing out from the surface of wire - (B) Pointing in the direction of wire - (C) Pointing inwards at the surface of the wire - (D) always zero as the current is constant - 15. The velocity of electromagnetic wave in vaccum is given by : - (A) $\frac{1}{\epsilon_0 \mu_0}$ $(B) \quad \frac{1}{\sqrt{\epsilon_0 \mu_0}}$ (C) $\sqrt{\epsilon_0 \mu_0}$ - (D) ϵ_0 / μ_0 - 16. The power radiated by an oscillating electric dipole is: - (A) Maximum along the direction of dipole and zero in the plane perpendicular to the dipole - (B) Zero along the dipole direction and maximum in the plane perpendicular to the dipole - (C) Uniformly distributed in all directions - (D) is always only along the dipole direction and zero in any other direction - 17. An EM wave is incident normally on the surface between two dielectric media with refractive indices n₁ and n₂ respectively. If the incident wave is from medium with refractive index n, then: - (A) EM wave is total internally reflected if $n_2 < n_1$ - (B) Reflection coefficient is $\left(\frac{n_1 n_2}{n_1 + n_2}\right)^2$ - (C) EM wave is total internally reflected if $n_1 < n_2$ - (D) reflected wave is circularly polarized if the incident wave is plane polarized - 18. A charge Q is placed upon a capacitor C, at a potential difference V. The potential energy stored in the capacitor is given by: - (A) $\frac{1}{2}$ QV² (B) $\frac{1}{2}$ CV (C) $\frac{1}{2}$ VC² (D) $\frac{1}{2}$ Q²/C | 19. | | electrical pontential in a region $e \phi_0$ and a are constants. The ϕ_0 | | pace is given by $\phi = \phi_0 \exp(-ax^2)$, see density in the region is: | |-----|-------|--|------------|--| | | (A) | zero | (B) | 2αε ₀ χφ | | | (C) | $2a\varepsilon_0\phi$ (1- $2ax^2$) | (D) | $2a\varepsilon_0\phi$ (1+2ax²) | | 20. | | and B are canonically conjugate anically: | pair | of dynamical variables, quantum | | | (A) | AB + BA = 0 | (B) | $AB - BA = i_h$ | | | (C) | AB + BA = ih | (D) | AB - BA = 0 | | 21. | | e quantum mechanical context, | for o | rbital angular momentum $\vec{\mathbf{L}}_{\times} \vec{\mathbf{L}}$ is | | | (A) | zero | (B) | L^2 | | | (C) | $\overrightarrow{\hbox{ih} L}$ | (D) | infinite | | 22. | The | zero point energy of the linear | harı | nonic oscillator: | | | (A) | $ rac{1}{2}$ h $w_{ m c}$ | (B) | $ rac{1}{2}n_{ m h}w_{c}$ | | | (C) | $\left(n+\frac{1}{2}\right)h w_c$ | (D) | n h $w_{ m c}$ | | 23. | The | eigen functions of L2 are (here | L is | orbital angular momentum): | | | (A) | Gaussian functions | (B) | Spherical harmonics | | | (C) | Bloch functions | (D) | Bessel functions | | 24. | | total number of degenerate states
n are : | s for (| the second excited state of hydrogen | | | (A) | 2 | (B) | 3 | | | (C) | 4 | (D) | 9 | | Phy | Sci — | .11 7 | | P.T.O. | | 25. | The
are | | erato | for a system of identical particles | |--------|------------|-----------------------------------|--------|-------------------------------------| | | (A) | ±1 | (B) | 0 and 1 | | | (C) | 0 and -1 | (D) | 0 and ∞ | | 26. | The | momentum transfer in an elas | tic so | attering of particles: | | | (A) | depends on scattering angle | | | | | (B) | does not depend on scattering | g ang | de | | | (C) | Zero | | | | | (D) | cannot be evaluated | | | | 27. | In th | ne stark effect the perturbation | is d | ue to : | | | (A) | magnetic field | | | | | (B) | electromagnetic radiation | | | | | (C) | thermal excitations | | | | | (D) | electric field | | | | 28. | Accor | rding to optical theorem the tot | al sca | attering cross section is equal to: | | | (A) | 4π/k | (B) | f(0) | | | (C) | $\frac{4\pi}{k}$ Im $f(0)$ | (D) | $\frac{4\pi}{k} f(\theta, \phi)$ | | 29. | The | eigenvectors (spinors) of Pauli's | spin | matrices are : | | | (A) | 2 × 1 matrices | | | | | (B) | 2 × 2 matrices | | | | | (C) | 3 × 3 matrices | | | | | (D) | 4 × 4 matrices | | | | Phy. S | Sci.—I | I 8 | | | | 3 0. | | ch one of the following phase sh
tering ? | ifts v | vi | ill give information about p-wave | | | |-------------|--|--|-------------|----|-----------------------------------|--|--| | | (A) | δ_0 | (B) | | δ_{i} | | | | | (C) | δ_2 | (D) | | $\delta_{_3}$ | | | | 31. | _ | A solid ball of metal has a spherical cavity inside it. The ball is now heated what will happen to the volume of the cavity? | | | | | | | | (A) | Increase | (B) | | Decrease | | | | | (C) | No change | (D) | | Shape will change | | | | 32. | The U: | The internal energy \boldsymbol{U} is a unique function of any state because change in \boldsymbol{U} : | | | | | | | | (A) | Does not depend upon path | | | | | | | | (B) | Depends upon path | | | | | | | | (C) | Corresponds to an adiabatic process | | | | | | | | (D) | Corresponds to an isothermal | proc | es | SS | | | | 33. | The radiation emitted by a perfectly blackbody is proportional to the: | | | | | | | | | (A) | T on ideal gas scale | | | | | | | | (B) | Fourth root of T on ideal gas scale | | | | | | | | (C) | Fourth power of T on ideal gas scale | | | | | | | | (D) | Source of T on ideal gas scale | е | | | | | | 34. | The free electron theory explains electrical conduction on the basis of: | | | | | | | | | (A) | number of electrons in each a | tom | | | | | | | (B) | B) number of electrons only | | | | | | | | (C) | number of free electrons per unit volume | | | | | | | | (D) | change of electrons only | | | | | | | Phy. | Sci.— | 9 | | | P.T.O. | | | | 35. | The first law of thermodynamics confirms the law of: | | | | | | |------|--|--|--------|--|--|--| | | (A) | | | | | | | | (B) | Conservation of energy of mo | | | | | | | (C) | Flow of heat in a particular | direct | tion | | | | | (D) | Conservation of heat energy | and : | mechanical energy | | | | 36. | Assu | | | ck body raditaion of 6000 K. The | | | | | wav | elength of maximum emission i | ntens | ity per unit wavelength will be in | | | | | | range of: | | - | | | | | (A) | 5000 Å | (B) | 2500 Å | | | | | (C) | 3500 Å | (D) | 9900 Å | | | | 37. | By u | sing the Maxwell distribution of | veloci | ties one can evaluate the root mean | | | | | squa | re velocity U _r by : | | | | | | | (A) | $\left(\frac{\mathrm{KT}}{\mathrm{m}}\right)^{1/2}$ | (B) | $\frac{3}{2}\left(\frac{KT}{m}\right)^2$ | | | | | | () | (D) | 2(m) | | | | | (C) | $\left(\frac{3\mathrm{KT}}{\mathrm{m}}\right)^{1/2}$ | (D) | 3KTm | | | | 38. | The | degenerate electron gas follows | : | | | | | | (A) | Maxwell Boltzmann statistics | | | | | | | (B) | Bose-Einstein statistics | | | | | | | (C) | Fermi-Dirac statistics | | | | | | | (D) | None of the above | | | | | | 39. | The | discrete value of energy the at | omic | oscillators can have are: | | | | | (A) | n h w^2 | (B) | $n^2 \cdot h w$ | | | | | (C) | nh w | (D) | 2nhw | | | | 40. | If the is: | e Debye's temperature of metal | is 45 | 0K, the order of Debye frequency | | | | | (A) | 10 ¹³ Hz | (B) | 10 ² Hz | | | | | (C) | 10 ²³ Hz | (D) | 10 Hz | | | | Phy. | Sci.—I | | (1) | 112 | | | | • | | 10 | | | | | | 41. | The | Signal. e shape of the output of a detector d | enends on : | |-------------|------------|---|---| | | (A) | high voltage applied | openus ou . | | | | | | | | (B) | • | | | | (C) | coupling capacitor and its resistan | ce | | | (D) | gas pressure in the detector | | | 42 . | Time | ne coincidence measurements are use | d for: | | | (A) | measuring the background counts | | | | (B) | measuring the energy of the radia | ation | | | (C) | measuring the pulse height of the | radiation | | | (D) | finding the desired events in the | presence of a background | | 43. | Best | st vaccum that can be attained with | a rotary pump is: | | | (A) | 10 ⁻³ Torr (B) | 1 Torr | | | (C) | 10 ⁻⁶ Torr (D) | 10 ⁻¹⁰ Torr | | 44. | The | e attenuation of γ-rays in matter is | similar to : | | | (A) | attenuation of x-rays | | | | (B) | attenuation of β-rays | | | | (C) | attenuation of neutrons | | | | (D) | attenuation of protons | | | 4 5. | The | e energy resolution of a semiconductor de | etector is better than the gas detector | | | beca | ause: | | | | (A) | the atoms collide with each other in do not | gas whereas in semiconductor they | | | (B) | the amount of generated charge car | riers is more in solid state detector | | | (C) | the energy absorption is less in ga | as detectors | (D) semiconductor detector produce bigger output pulses | In a photomultiplier if each stage emits 4 secondaries per primary and there are ten stages, the gain is of the order of | | | | | | |--|--|---|---|--|--| | | 10 ⁸ | | | 106 | | | (C) | 104 | . , | | 10 ² | | | In F | Penning gauge megnet is used t | ` ' | | | | | (A) | | | it | v | | | (B) | _ | | | | | | | | | - | <i>y</i> | | | | _ | _ | | | | | The | The potential difference of 20 kV is applied to X-ray tube the minimum | | | | | | (A) | 0.621 Å | (B) | | 1.54 Å | | | (C) | 3.2 Å | (D) | | 1 μ | | | | The reference voltage of an ADC is 1V. What is the smallest voltage step you can measure using a 12-bit converter. | | | | | | (A) | 24 μV | | | | | | (B) | 24 mV | | | | | | (C) | 3.9 mV | | | | | | (D) | 3.9 μV | | | | | | The pre-amplifier is used for: | | | | | | | (A) | increasing the gain of the circ | cuit | | | | | (B) | matching the impedance of de | vice | a | nd signal measuring circuit. | | | (C) | reducing the noise | | | | | | (D) | increasing the power | | | | | | Sci.—l | 112 | | | | | | | (A) (C) In I (A) (B) (C) (D) The you (A) (B) (C) (D) The (A) (B) (C) (D) (D) (C) (D) | are ten stages, the gain is of the of (A) 10° (C) 10° (C) 10° (D) In Penning gauge megnet is used ga | are ten stages, the gain is of the order (A) 10 ⁸ (B) (C) 10 ⁴ (D) In Penning gauge megnet is used for: (A) to increase the ionization probabil (B) to decrease the ionization probabil (C) to shield electromagnetic pick-up (D) to protect from light exposure The potential difference of 20 kV is approximately approxima | are ten stages, the gain is of the order of (A) 10 ⁸ (B) (C) 10 ⁴ (D) In Penning gauge megnet is used for: (A) to increase the ionization probability (B) to decrease the ionization probability (C) to shield electromagnetic pick-up (D) to protect from light exposure The potential difference of 20 kV is apply wavelength of the continuous spectrum is (A) 0.621 Å (B) (C) 3.2 Å (D) The reference voltage of an ADC is 1V. We you can measure using a 12-bit converted (A) 24 μV (B) 24 mV (C) 3.9 mV (D) 3.9 μV The pre-amplifier is used for: (A) increasing the gain of the circuit (B) matching the impedance of device a (C) reducing the noise (D) increasing the power | | ## ROUGH WORK ## ROUGH WORK