LIFE SCIENCE

Si	ignature of Invigilators	Paper - II OCT-10/04	~ ·· · · · · · · · · · · · · · · · · ·
	g	001-10/04	Roll No.
1.	***************************************		(In figures as in Admit Card
			Roll No
2.	***************************************		
			(in words)
Ti	me Allowed : 75 Minutes]		[Maximum Marks : 100
In	structions for the Candidates		
1.	Write your Roll Number in the space	provided on the top	of this page
2. 3.	For Condidio of Life (int) million	ITIO Oboice L	
IJ.	a capital letter for the and	responses marked (A	tions. All questions are compulsory. (A), (B), (C) and (D). The answer should be
	corresponding square.	n. The answer letter	A), (B), (C) and (D). The answer should be should entirely be contained within the
		_ -	
	Correct method W	rong method	A OR A
4.	Your responses to the items for this	paper are to be ind	licated on the ICR Answer Sheet under
5.	Read instructions given inside carefu	13	and told Allswer Sheet under
6.	Extra sheet is attached at the end of	lfy. the bealth fo	•
7.	Ground refull the test book of the	the involution is a	h work. e end of paper and should not carry any
8.	paper with you outside the examinati	on hall,	e end of paper and should not carry any
9.	There shall be no negative marking.		
	Use of calculator or any other electron	nic devices is prohib	vited.
	લાર્થીઓ માટે સૂચનાઓ :		
٩. -	આ પાનાની ટોચમાં દર્શાવેલી જગ્યામાં તમા	ારો રોલનંબર લખો.	
૨.	ુ આ પ્રશ્વપત્રમાં બહુવકાલ્પક _{(સ્ત} રો ઘરા _{વના}	see moure forms are s	આપેલા છે. લકા જ પશ્નો કરજિયાન હે
3.	પ્રત્વક પ્રશ્ન વધુમા વધુ ચાર બહુવૈકલ્પિક ઉત્ છે. પ્રશ્નનો ઉત્તર કેપીટલ સજ્ઞા વડે આપવાન લખવાની રહેલે	તરો ધરાવે છે. જે (A), નો રહેશે. ઉત્તરની સંજ્ઞા	િઆપલા છે. બધા જ પ્રશ્નો કરજિયાત છે. (B), (C) અને (D) વકે દર્શાવવામાં આવ્યા આપેલ ખાનામાં બરાબર સમાઈ જાય તે રીતે
	r 	<u>.</u>	
	ખરી રીત : 🛕 ખોટી	रीत :	A . A
۶.	આ પ્રશ્નપત્રના જવાબ આપેલ ICR Ansv આપવાના રહેશે.	wer Sheet - Pa	aper II વિભાગની નીચે આપેલ ખાનાઓમાં
l.	એંદર આપેલ સૂચનાઓ કાળજીપર્વક લાં <i>ચ</i> ે		
·.	આ બુકલેટની પાછળ આપેલું પાન રક કામ	માટે છે.	
).	પરીક્ષા સમય પૂરો થઈ ગયા પછી આ બુકલે.	ટ જે તે નિરીક્ષકને સોપ	ી દેવી. કોઈપણ કાગળ પરીક્ષા ખંડની બહાર
	લઇ જવા નહી. ખોટા જવાબ માટે નેગેટિવ ગુણાંકન પ્રથા નથી.		·· • ·· ગળ પ્લા ગામમાં પરાજ્ઞા ખડના બહાર
	કેલ્કયુલેટર અને ઈલેક્ટ્રોનિક યંત્રોનો પ્રયોગ કરવાન	ी भनार्थ छ	
		· · · · · · · · · · · · · · · · · · ·	

[P.T.O.]

LIFE SCIENCE

PAPER-II

Note: This paper contains FIFTY (50) multiple-choice questions, each question carrying TWO (2) marks. Attempt All the questions.

1.	Atoras :		r and different atomic weight are known			
	(A)	isoforms	(B) isobars			
	(C)	isotopes	(D) isomers			
2.	Whi	Which one of the following is not a high energy molecule?				
	(A)	Fructose-6-phosphate	(B) Acetyl phosphate			
	(C)	Creatine phosphate	(D) ADP			
3.		Which one of the following stabilizing interactions is in the increasing order of energy?				
	(A)	van der Waals, electrostatic, H-bonding, hydrophobic				
	(B)	van der Waals, hydrophobic, H-bonding, electrostatic				
	(C)	hydrophobic, van der Waals, H-bonding, electrostatic				
	(D)	hydrophobic, van der Waal	s, electrostatic, H-bonding			
4 .	β-ple	β-pleated structure is characteristic of one of these proteins :				
	(A)	collagen	(B) keratin			
	(C)	myosin	(D) fibroin			
5.	An example for a substrate linked phosphorylation is:					
	(A)	succinyl Co-A to succinic a	cid			
	(B)	(B) malic acid to oxaloacetic acid				
	(C)	succinic acid to fumaric aci	d			
	(D)	isocitric acid to α-ketogluta	ric acid			
Life	Science	e-II	3 (DTO)			

6.	$\mathbf{F_{0}}$ - \mathbf{F}	ATPase is present in the	following	compartment of mitochondria:		
	(A)	matrix	(B)	inner membrane		
	(C)	outer membrane	(D)	intermembranal space		
7.		of the following constituents:	uents ir	ocreases the stability of cell		
	(A)	phospholipid	(B)	glycoprotein		
	(C)	cholesterol	(D)	glycolipid		
8.	The	division of centrioles is acco	mplished	in this part of the cell cycle:		
	(A)	G_1	(B)	prophase		
	(C)	S	(D)	${f G_2}$		
9.	Insulin inhibits glycogenolysis by inhibiting:					
	(A)	phosphorylase- a	(B)	protein kinase		
	(C)	phosphorylase-b	(D)	phosphorylase-b kinase		
10.	In response to salinity stress Halobacterium accumulates:					
	(A)	K ⁺	(B)	Na ⁺		
	(C)	Mn*+	(D)	Ca ⁺⁺		
11.	Replisome, a conglomerate of proteins, found at the replication fork of DNA has which of the following proteins?					
	(i)	SSB protein				
	(ii)	DNA gyrase				
	(iii)	DNA helicase				
	(iv)	Primase				
	(v)	DNA polymerase III				
	(vi)	Exonuclease				
	(A)	(i), (ii) , (iii) and (v)	(B)	(i), (iii), (iv) and (v)		
	(C)	(iii), (iv) and (v)	(D)	(ii), (iii) and (iv)		
Life S	Science	e-II	4			

Ho	liday junction is observed o	during :				
(A)	mitosis	(B)	interphase			
(C)	DNA repair	(D)	recombination			
Amongst the bacterial sigma subunit of RNA polymerase, one of the following						
	•		ons:			
		(B)	sigma 32			
	9 -	(D)	sigma F			
Pre-	mi-RNA are synthesised by	y :				
(A)	RNA polymerase II					
(B)	RNA polymerase I		•			
(C)	RNA polymerase III					
(D) Mitochondrial RNA polymerase						
Attenuation is a process of regulation of bacterial amino acid biosynthetic genes. It involves:						
(A) decrease in the level of m-RNA synthesis						
(B) increased degradation of m-RNA						
(C) formation of truncated m-RNA						
(D)	shift in the reading frame	e resulting	in transcription termination			
Which one of the following is not a secondary messenger?						
(A)	NO	(B)	IP_3			
(C)	c-GMP	(D)	AMP			
Cell I	proliferation is not mediate	d by one o	of the following molecules:			
(A)	\mathbf{P}^{53}	(B)	Caspase			
(C)	P^{21}	(D)	BCl ²			
ience-	П	5	[P.T.O.]			
	(A) (C) Amage is in (A) (C) Pre- (A) (B) (C) (D) Atter gener (A) (C) (D) Which (A) (C) (C) (C) (A) (C) (C)	(A) mitosis (C) DNA repair Amongst the bacterial sigma sure is induced by the environment (A) sigma 54 (C) sigma E Pre-mi-RNA are synthesised by (A) RNA polymerase II (B) RNA polymerase III (C) RNA polymerase III (D) Mitochondrial RNA polymerase III (D) Mitochondrial RNA polymerase II involves: (A) decrease in the level of notes increased degradation of (C) formation of truncated models increased degradation of (C) shift in the reading frame (D) shift in the reading frame (A) NO (C) c-GMP Cell proliferation is not mediated A) P ⁵³	Amongst the bacterial sigma subunit of Ri is induced by the environmental condition (A) sigma 54 (B) (C) sigma E (D) Pre-mi-RNA are synthesised by: (A) RNA polymerase II (B) RNA polymerase II (C) RNA polymerase III (D) Mitochondrial RNA polymerase Attenuation is a process of regulation of genes. It involves: (A) decrease in the level of m-RNA synthesised degradation of m-RNA (C) formation of truncated m-RNA (C) formation of truncated m-RNA (D) shift in the reading frame resulting which one of the following is not a second (A) NO (B) (C) c-GMP (D) Cell proliferation is not mediated by one of the polymeration			

18.	An in	amunosuppressive antibiotic is	•			
	(A)	Actinomycin-D	(B)	Rifampicin		
	(C)	Cyclosporin-A	(D)	Cephalosporin-C		
19.	IgE i	s well known for its role in:				
	(A)	phagocytosis				
	(B)	passive immunity				
	(C)	reticulo-endothelial reactions				
	(D)	allergic reactions				
20.	Which of the following statements is correct?					
	(A)	A) Naive B cells have limited life span.				
	(B)	Naive B cells secrete IgG.				
	(C)	B cells are produced only in the early stage of development.				
	(D)	Plasma cells secreting anti	bodies	survive in the body for many		
		months.				
21.	Spira	al type of cleavage occurs in :				
	(A)	kangaroo embryo	(B)	annelid embryo		
	(C)	ophidian embryo	(D)	human embryo		
22.	One of the following structures acts as an embryonic organizer during chick					
	\mathbf{emb}	ryogenesis:				
	(A)	area opeca	(B)	area pellucida		
	(C)	primitive streak	(D)	mesodermal somites		
Life	Science	ce-II 6	5			

23. Regression of tail in anuran tadpole occurs under the infl		curs under the influence of :				
	(A		(B	•		
	(C)	oxytocin .	(D)) thyroxin		
24.	In contrast to animals, plants exhibit:					
	(A)	indeterminate growth a	and persiste	ent morphogenesis		
	(B)					
	(C)			•		
	(D)	determinate growth and				
25.	Pro	embryo of a plant is the z				
	(A)	64 cells stage	(B)	32 cells stage		
	(C)	16 cells stage	(D)	02 cells stage		
26. Agranal as well as granal chloroplasts are found in these plan		-				
	(A)	C_3	(B)	C ₄		
	(C)	CAM	(D)	Both C ₄ and CAM		
27.	Gene	etic dwarfism can be count	ered by tre			
	(A)	kinetin	(B)	auxin		
	(C)	gibberellic acid	(D)	abscisic acid		
28.	Chlor	Chlorofluorenol, a plant growth hormone, that does not affect the unicellula				
	and s	simple filamentous plants,	is common	ly called:		
	(A)	morphactin	(B)	phyllocaline		
	(C)	vernalin	(D)	dormin		
Life S	cience	П	7	[P.T.O.]		

29.	If a	diazotroph has this enzyme,	the nitro	ogen fixation is more efficient:	
	(A)	cytochrome oxidase	(B)	hydrogenase	
	(C)	phosphate kinase	(D)	adenylate cyclase	
30.	What sink		nt of sa	p from a sugar source to sugar	
	(A)	It occurs through apoplast	of sieve	tube elements.	
	(B)	It results in translocation fi	rom root	to shoot tip.	
	(C)	It is similar flow of sap in	xylem b	ased on negative pressure.	
	(D)	It is dependent on the exte	nt of pr	imary production.	
31.		of the following mechanorecepermis of skin:	tors are	situated immediately beneath the	
	(A)	Meissner's corpuscles	·(B)	Pacinian corpuscles	
	(C)	Organs of Ruffini	(D)	Bulbs of Krause	
32.	Vertebrate blood transports oxygen largely in the form of:				
	(A)	$\mathrm{H} ext{-}\mathrm{HbO}_2$	(B)	${ m HbO}_2$	
	(C)	K-HbO ₂	(D)	$ ext{K-HbO}_3$	
33.	Purely sensory cranial nerves are:				
	(A)	I, II and VIII	(B)	III, IV and VI	
	(C)	V, VII and IX	(D)	II, III and IV	
34.		gene one enzyme hypothesis v eurospora crassa by :	was prop	osed based on mutational studies	
	(A)	Watson and Crick	(B)	Beadle and Tatum	
	(C)	Harshey and Chase	(D)	Venter and Smith	
Life	Scienc	e-II	8		

30	. 11	gene 'A' is domina	ant over 'a' and 'l	B' is incomplete dominant over 'b			
	th	en the number of oss would be:	categories of phe	notypes resulting from a dihybric			
	(A)	4	(B)) 6			
	(C)	8	(D)	16			
36.	VDJ recombination is an example of:						
	(A)	homologous reco	mbination				
	(B)	(B) site specific recombination					
	(C) non-homologous recombination						
	(D)	transposition					
37.	Immature form of Plasmodium inoculated by mosquito in human body is:						
	(A)	cryptozoite	(B)	merozoite			
	(C)	metacryptozoite	(D)	sporozoite			
38.	The	capacity of regener	ration in sponges	is due to the presence of:			
	(A)	amoebocytes	(B)	archeocytes			
	(C)	concoblasts	(D)	scleroblasts			
39 .	Ther	mus aquaticus is a	thermophile:				
	(A)	bacterium	(B)	archebacterium			
	(C)	mould	(D)	protozoan			
Life S	cience	-II	9	[P.T.O.]			

40. Wilt of pigeon pea is caused by:				
	(A) .	Alternaria alternata		
	(B)	Curvularia lunata		
	(C)	Fusarium oxysporum		
	(D)	Helminthosporium victoriae		
41.	The c	ommon Chinese waders visiti	ing Indi	an wet lands are:
	(A)	painted storks	(B)	spotbill ducks
	(C)	coots	(D)	ringed plovers
42 .	A hal	bitat not conducive to primar	y produ	ectivity is:
	(A)	cave	(B)	pond
	(C)	meadow	(D)	river bank
43.	The	bacteria Thiobacillus and Ba	ggiatoa	play a role in:
	(A)	water cycle	(B)	phosphate cycle
	(C)	nitrogen cycle	(D)	sulphur cycle
44.	Orig	in of most of the mineral coa	al depos	its can be traced to:
	(A)	cambrian period of palaeoz	oic era	·
	(B)	carboniferous period of pale	aeozoic	era
	(C)	triassic period of mesozoic	era	
	(D)	upper cretaceous period of	mesozo	ic era
45. An animal confronted with conflicting		icting s	tuation exhibits:	
	(A)	empimeletic behaviour	(B)	eleminative behaviour
	(C)	agonistic behaviour	(D)	exploratory behaviour
Lif	e Scien	ce-II	10	

46 .	Cita	ric acid is produced by	y :		
	(A)	Aspergillus niger	(B)) Aspergillus oryzae	
	(C)	Aspergillus fumigat	us (D)	_	
47.	The	enzyme used in gluce	ose biosensor i	1	
	(A)	glucose hydrogenase	e (B)	glucose isomerase	
•	(C)	glucose oxydase	(D)	endogluconase	
48.	ESR spectroscopy was used in the determination of the mechanism of enzym catalyzed reaction:				
	(A)	adenosine deaminas	e		
	(B)	thymidylate synthat	ase	•	
	(C)	adenosine phosphori	bosyl transfera	se	
	(D)	ribonucleotide reduc	tase		
49 .	Which one of the following techniques is <i>not</i> useful in determining the single nucleotide polymorphism?				
	(A)	SSCP	(B)	DNA fingerprinting	
	(C)	AFLP	(D)	RFLP	
50. ,	mixec	d, one coin is drawn	blindly and n	the same size and weight are not replaced followed by another are the chances that both will be	
	(A)	about 12%	(B)	about 22%	
	(C)	about 31%	(D)	about 39%	
Life S	cience	-II	11	(P.T.O.)	

ROUGH WORK