U
Ti
Þ

1 2	—04/3	CHEMICAL SCIENCE Paper II	Roll No (In figures as in Admit Card) Roll No (In words)
		Name of	the Areas/Section (if any)
Time	Allowed: 75 Min		[Maximum Marks: 100
1. 2. 3.	This paper consist Each item has up be a capital letter the corresponding	to four alternative responses marked for the selected option. The answer l	e top of this page. questions. All questions are compulsory. (A), (B), (C) and (D). The answer should etter should entirely be contained within
4.	Your responses to paper II only.	the items for this paper are to be in	adicated on the ICR Answer Sheet under
5. c		given inside carefully.	
6. 7.	You should return	ched at the end of the booklet for a the test booklet to the invigilator a ou outside the examination hall.	t the end of paper and should not carry
	ાર્થીઓ માટેની સૂચના	-	
9. -		વિલી જગ્યામાં તમારો રોલ નંબર લખો.	
ર. ૩.	પ્રત્યેક પ્રશ્ન વધુમાં વધ્ પ્રશ્નનો ઉત્તર કેપીટલર રહેશે.	યાસ (50) બહુવૈકલ્પિક ઉત્તરો ધરાવતા પ્રશ્ન ાુ ચાર બહુવૈકલ્પિક ઉત્તરો ધરાવે છે. જે (A પ્રજ્ઞા વકે આપવાનો રહેશે. ઉત્તરની સંજ્ઞા આપે ી રીત : 🔼 , 🔼	ા આપલા છ . બધા જ પ્રશ્ના ફરાજયાત છે.), (B), (C) અને (D) વડે દર્શાવવામાં આવ્યા છે. ! લ ખાનામાં બરાબર સમાઈ જાય તે રીતે લખવાની
४.	આ પ્રશ્નપત્રના જવાબ રહેશે.	ા આપેલ ICR Answer Sheet ના Paper II	વિભાગની નીચે આપેલ ખાનાંઓમાં આપવાના
પ.	અંદર આપેલ સૂચનાઅ		
ક. ૭.	પરીક્ષા સમય પૂરો થઈ	તાપેલું પાનું ૨ફ કામ માટે છે. `ગયા પછી આ બુકલેટ જે તે નિરીક્ષકને સોપી	. દેવી. કોઈપણ કાગળ પરીક્ષા ખંડની બહાર લઈ
	જવો નહીં.		

CHEMICAL SCIENCE

PAPER-II

Note		s paper contains fifty (50) multicks each. Attempt <i>all</i> questions.	tiple	choice questions, carrying two (2)
1.	Duri	ng the determination of copper		en carried out volumetrically with sent as an impurity it leads to:
	(A)	Proportional error		Personal error
	(C)	Instrumental error		Huge error
2.	, ,	ch of the following statement is		-
	(A)	Accuracy is determined by sin		,
	(B)	Accuracy results are those res		
	(C)			roducibility of the measurement
	(D)	Accuracy indicates the closenes or accepted value.	ss of	the measurement to its true value
3.		emplexometric micro titration of cator the following results were		um with EDTA with mureoxide as ined:
	9.990	0, 9.985, 9.980, 9.982, 9.9	973 ı	ml.
	Ther	refore the value of the standard	dev	iation of the mean is:
	(A)	6.3×10^{-3}	(B)	9.9820
	(C)	0.06311	(D)	6.3×10^3
4.	In q	uantitative analysis the error w	hich	cannot be easily rectified is:
	(A)	Determinant error	(B)	Indeterminant error
	(C)	Instrumental error	(D)	Personal error
5.	In t	he following set of values indica	ate w	hich is the median value?
	(A)	22.78	(B)	22.62
	(C)	22.83	(D)	22.84

3

P.T.O.

6.	Whi	ch of the following is the corre	ct ele	ctronic configuration of N ₂ :	
	(A)				
	(B)	$(\sigma^b_{1S})^2(\sigma^b_{2S})^2(\sigma^*_{1S})^2(\sigma^*_{2S})^2(\pi^b_{2px})^2$	$\left(\pi^{b}_{2}\right)^{2}$	$_{py})^{2}(\pi^{b}_{2pz})^{2}$	
	(C)	$(\sigma^b_{1S})^2(\sigma^*_{1S})^2(\sigma^b_{2S})^2(\sigma^*_{2S})^2(\pi^b_{2pz})^2$	$)^2 (\pi^b_2)$	$_{px}$) 2 $\left(\pi^{b}_{2py}\right)^{2}$	
		$(\sigma^b_{1S})^2(\sigma^*_{1S})^2(\sigma^b_{2S})^2(\sigma^*_{2S})^2(\pi^b_{2py})^2$. ,	, , ,	
7.	Whi	ch among the following has ato	mic n	umber 106 according to the recent	
		enclature:		_	
	(A)	Dubnium	(B)	Hassium	
	(C)	Bohrium	(D)	Seborgium	
8.	The	The positions of lone pairs in ClF, are:			
	(A)	one equatorial, one axial	(B)	Two equatorial	
	(C)	Two axial	(D)	Three equatorial	
9.	The	correct order of IP of B,C,N a	nd O	is:	
	(A)	O > N > C > B	(B)	O > N > B > C	
	(C)	N > O > C > B	(D)	O > B > N > O	
10.	The	The point group of trans-[Ni(NH ₃) ₄ Cl ₂] is:			
	(A)	$\mathbf{D}_{\mathbf{3h}}$	(B)	D_{2h}	
	(C)	$\mathbf{C_{2v}}$	(D)	D_{4v}	
11.	Oxio	dation number of Iodine varies	from	:	
	(A)	-1 to +1	(B)	-1 to +7	
	(C)	+3 to +5	(D)	-1 to +5	
12.	The	The hybridization state of Mn centre in Mn ₂ (CO) ₁₀ is:			
	(A)	$ m d^2sp^3$	(B)	$\mathrm{sp^3d^2}$	
	(C)	$ m sp^3d$	(D)	$ m dsp^3$	
13.	Octa	Octahedral Mn(II) complexes exhibit pale colour:			
	(A)	Due to spin Forbidden transi	tion		
	(B)	Strong L-S coupling			
	(C)	Large Δ value			
	(D)	Large molecular distortion			

4

14.	The observed magnetic moment of $[Ni(L_3)]^{2+}$ (L = neutral bidentate ligans			
	at 298 K is 3.21 B.M., which is due			
	(A) μ _s only	(B) μ _{L+S}		
	(C) Excited state contribution	(D) μ _J		
15 .	Octahedral Cobalt(III) complexes p	prefrentially stabilized in low spin		
	configuration, due to:			
	$(A) \Delta > p$			
	(B) $\Delta \leq p$			
	(C) large gain in CFSE			
	(D) Jahn Taller effect			
16.	The "S" bond in Cr_2 (CH ₃ COO) ₄ /(H ₂ O) ₂ is formed via the overlapping of:		
	(A) dxy orbitals	(B) dz ² orbitals		
	(C) dxz orbitals	(D) dyz orbitals		
17.	The structure of $\operatorname{Fe_3(CO)}_{12}$ comprises	:		
	(A) No bridging CO group			
	(B) One bridging CO group			
	(C) Two CO bridging groups			
	(D) Three CO bridging groups			
18.	The correct IUPAC nomenclature of	the compound $[CO(NH_3)_4(H_2O)Cl] Cl_2$		
	is:			
	(A) Aquochlorotetramminecobalt (II	I) chloride		
	(B) Tetrammineaquochlorocobalt (II	I) chloride		
	(C) Chloroaquotetramminecobalt (II	I) chloride		
	(D) Aquotetramminecobalt (III) chlo			
19.	The lowest energy d-d transition of	[Cr(NH ₃) ₆] ³⁺ originates from :		
	$(A) 4 T_{2g} \rightarrow 4 A_{2g}$			
	$(B) 4 T_{2g} \rightarrow 4 T_{1g}$			
	(C) $4 A_{2g} \rightarrow 4 T_{2g}$			
	(D) $4 A_{2g} \rightarrow 4 T_{1g}$			

5

P.T.O.

- 20. Which of the following compounds is used in the hydrogenation of alkenes/ as a catalyst?
 - $(CH_3)_3$ RhCl (A)

(C₆H₅)₃RhCl

- $\begin{array}{ll} \text{(B)} & (\text{C}_2\text{H}_5)_3\text{RhCl} \\ \text{(D)} & (\text{Ph}_3\text{P})_3\text{RhCl} \\ \end{array}$
- The systematic IUPAC nomenclature for the following compound given below 21. is:

- (A) 4 - Methyl cyclohex-3-ene-1-one
- (B) 1 - Methyl cyclohex-1-ene-4-one
- (C) 4 - Methyl cyclohex-4-ene-1-one
- 2 Methyl cyclohex-1-ene-5-one **(D)**
- 22. The correct nomenclature of the following geometrical isomer is:

$$H_3C$$
 $C = C$
 H
 H_3C
 H
 H

- · (A) E,Z-heptadiene
- (B) Z,E-2,5-heptadiene
- Z,Z-2,5-heptadiene (C)
- **(D)** E,E-2,5-heptadiene
- 23. The configurations at the carbon atoms 1 and 2 in the compound given below are respectively:

OH

(A) 1R, 2R (B) 1S, 2R

(C) 1R, 2S **(D)** 1S, 2S

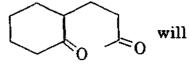
24. The most stable conformation of the following dianion is:

(A) 1a, 2e

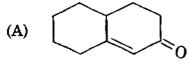
(B) 1e, 2e

(C) 1e, 2a

(D) 1a, 2a


25. The product of Birch reduction of benzoic acid is:

26. The most stable carbocation among the following is:


(A) **C**H₃

Chem. Sc.--II

27. On aldol condensation followed by dehydration

produce :

- (D)
- 28. On Schmidt rearrangement acetophenone will produce :
 - (A) A nitrile
 - (B) N-Methyl benzamide
 - (C) Acetanilide
 - (D) A mixture of N-methyl benzamide and acetanilide.
- 29. The conversion of phenol to salicylaldehyde can be achieved by:
 - (A) Aromatic nucleophilic substitution
 - (B) Beckmann rearrangement
 - (C) Reimer-Teimann reaction
 - (D) Hofmann rearrangement
- 30. Aniline on nitration in presence of conc. HNO₃ and conc. H₂SO₄ gives one of the following as a major product.
 - (A) m-Nitro aniline
 - (B) o-Nitro aniline
 - (C) p-Nitro aniline
 - (D) A mixture of o- and p-Nitro anilines.

31. On Oppenauer oxidation the following:

gives

- 32. Reaction of methyl benzoate with CH₃MgBr generates :
 - (A) α , α Dimethyl benzyl alcohol
 - (B) Acetophenone
 - (C) Methyl -o- methyl benzoate
 - (D) Benzyl alcohol
- 33. The two hydrogen atoms attached to C_i of the following compound are CH_3 -CHCl- CH_2Cl
 - (A) Enantiomeric

(B) Anomeric

(C) Equivalent

(D) Diastereotopic

Chem. Sc.--II

- 34. The NMR data corresponds to one of the following compounds : Molecular formula $C_{10}H_{14}$.
 - (i) doublet δ 0.88 6H
 - (ii) multiplet δ 1.86 1H
 - (iii) doublet δ 2.45 2H
 - (iv) singlet δ 7.12 5H

(A)
$$\langle \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{CH}_3 - \text{CH}_3 \rangle$$

(B)
$$CH_2 - CH_3 - CH_3$$

(C)
$$CH_2$$
— $CH<_{CH_3}$

(D)
$$H_3C$$
 $CH_2 - CH_2 - CH_3$

- 35. Singlet and triplet carbenes can be differentiated through:
 - (A) IR

(B) NMR

(C) UV

- (D) EPR
- 36. The n, l, m, quantum number characterizing the 2Pz orbital are:
 - (A) n = 2, l = 1, m = 0
 - (B) n = 2, l = 1, m = +1
 - (C) n = 2, 1 = 1, m = -1
 - (D) n = 2, 1 = 2, m = 0
- 37. The order in which ionization potentials increase for Li, Be, B and C is:
 - (A) C > B > Be > Li
- (B) C > Be > B > Li
- (C) C > Li > Be > B
- (D) Li > Be > B > C

38.	Hybi	ridization responsible for geo	netry of BF ₃ is:	
	(A)	sp	(B) sp^2	
	(C)	sp ³	(D) dsp^2	
39.	Elect	tronic confign and bond orde	of N ₂ are :	
	(A)	$1\sigma_{\rm g}^{2} 1\sigma_{\rm u}^{2} 2\sigma_{\rm g}^{2} 2\sigma_{\rm u}^{2} 1\pi_{\rm u}^{4}$	$s\sigma_{\rm g}^2$ and B.O. = 3	
	(B)	$1\sigma_{g}^{2} 1\sigma_{u}^{2} 2\sigma_{g}^{2} 2\sigma_{u}^{2} 3\sigma_{g}^{2}$	$\pi_{\rm u}^{-4}$ and B.O. = 3	
	(C)	$1\sigma_{g}^{2} 1\sigma_{u}^{2} 2\sigma_{g}^{2} 2\sigma_{u}^{2} 3\sigma_{g}^{2}$	$\pi_{\rm u}^{-4}$ and B.O. = 2	
	(D)	$1\sigma_{\rm g}^{2} 1\sigma_{\rm u}^{2} 2\sigma_{\rm g}^{2} 2\sigma_{\rm u}^{2} 1\pi_{\rm u}^{4}$	$6\sigma_{\rm g}^2$ and B.O. = 2	
40.	The	structure of CsCl and NaCl	respectively are :	
	(A)	f.c.c and simple cubic	(B) b.c.c and simple cubic	
	(C)	f.c.c and b.c.c	(D) b.c.c and f.c.c	
41.	Elec	tronic Transitions occur in the	e time scale of:	
	(A)	femto seconds	(B) pico seconds	
	(C)	nano seconds	(D) micro seconds	
42 .	Vibr	ational transitions are trigge	red by:	
	(A)	UV radiation	(B) Visible radiation	
	(C)	IR radiation	(D) Microwave radiation	
43.	The	best technique for character	zing free radicals is :	
	(A)	IR	(B) UV	
	(C)	NMR	(D) EPR - 3	
44.	Wha	at is the pH of a solution prep	ared by dissolving 0.100 mol of Na(OH and
	0.10	0 mol of NH ₃ in enough wa	er to make a litre?	
	(A)	14.0	(B) 13.0	
()	(C)	12.0	(D) 11.0	D.M.C
Cnen	n. Sc.–	—11	.1	P.T.O.

•

.

45.	•	g the complexes with class A metal ion (viz
	alkaline earths) is:	
	(A) N > P > As > Sb	(B) $P > As > Sb > N$
	(C) $As > Sb > N > P$	(D) $Sb > N > P > As$
46.		strate that ${ m H_2SO}_4$ acts as dehydrating agent
	(A) $C_6 H_{12} O_6 \to 6C + H_2 O$	01 0
	(B) $5H_2SO_4 + 4Zn \rightarrow H_2S$	• -
	(C) $H_2SO_4 + Zn \rightarrow Zn^{2+} +$	2 7
	(D) $H_2SO_4 + ZnCO_3 \rightarrow Zn^2$	$^{+} + CO_{2} + SO_{4}^{2-} + H_{2}O$
47.	In the reaction between warm	cone H ₂ SO ₄ and KI,
	$8\Gamma + H_2SO_4 + 8H_{(aq)}^+ \rightarrow 4I_2$	$_{2(g)} + H_2S_{(g)} + 4H_2O$
	(A) I is reduced	
	(B) H ₂ S is a reducing agent	;
	(C) H ⁺ is reducing	•
	(D) H ₂ SO ₄ is a oxidizing ag	ent
48.	If the process is both endother	
	(A) $\Delta S > 0$	(B) $\Delta S < 0$
	(C) $\Delta H < 0$	(D) $\Delta G > 0$
49.		e approximately constant between 25°C and 4. What would be the temperature of normal
	(A) 35°C	(B) 75°C
	(C) 100°C	(D) 274°C
50.	In an experiment to study the $-d[A]/dt$ at $t = 0$, was found t $-d[B]/dt$ at $t = 0$ in Ms^{-1} ?	reaction A + 2B \rightarrow C + 2D, the initial rate of be 2.6×10^{-2} Ms ⁻¹ . What is the value of
	(A) 2.6×10^{-2}	(B) 5.2×10^{-2}
	(C) 1.3×10^{-2}	(D) 5.2×10^{-4}
Chem	n. Sc.—II	12

ROUGH WORK

ROUGH WORK