





भारत सरकार/Government of India अंतरिक्ष विभाग/Department of Space दव नोदन प्रणाली केंद्र/LIQUID PROPULSION SYSTEMS CENTRE वित्यमला पी ओ, तिरुवनंतपुरम/Valiamala PO, Thiruvananthapuram - 695 547

तकनीशियन 'बी' (इलक्ट्रॉनिक यांत्रिक) के पद के चयन हेत् लिखित परीक्षा WRITTEN TEST FOR SELECTION TO THE POST OF TECHNICIAN 'B' (ELECTRONIC MECHANIC)

दिनांक/Date: 04.03.2018

उच्चतम अंक/Maximum Marks: 300

समय/Time: 2 घंटे/hours (1000 घंटे/hrs to 1200 घंटे/hrs)

|  |  | - |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |

## अञ्चर्षियों के लिए अन्देश/Instructions to the Candidates

- उत्तर लिखने की शुरुआत से पहले अध्यर्थियों को प्रश्न पुस्तिका एवं ओएमआर उत्तर शीट निर्देशों को ध्यान से पढ़ना 1. चाहिए/Candidates should read carefully the instructions in the Question booklet and OMR Answer Sheet before start answering.
- ओन-लाइन आवेदन में अभ्यर्थियों द्वारा दिए गए डाटा के आधार पर लिखित परीक्षा के लिए बुलाया गया है। यदि 2 आपने आवेदन में गलत रूप में दिया है तो हमारे विज्ञापन के आधार पर अपेक्षित योग्यता नहीं है तो आपकी अभ्यर्थिता रह की जाएगी/ Candidates have been called for the written test based on the data furnished by them in the on-line application. If you have wrongly entered in the application or you do not possess the required qualification as per our advertisement, your candidature will be rejected. Candidature of candidates who do not have required qualification shall be rejected.
- परीक्षा होंल में निरीक्षक की उपस्थिति में ही प्रयेश कार्ड/फोटोग्राफ में हस्ताक्षर करना चाहिए/Candidates should sign the Admit Card/Photograph only in the presence of the invigilator in the Examination Hall.
- प्रश्न पत्र 75 प्रश्नों से युक्त एक प्रश्न युक्तलेट(पुस्तिका) रहेगी। प्रश्नों के उत्तर देने के लिए अलग से एक औएमआर शीट दिया जाता है/ The question paper is in the form of Question Booklet with 75 questions. A separate OMR sheet is provided for answering the Questions.
- प्रश्न बुकलेट शृंखला(ए/बी/सी/डी/ई) कोड़ जो ओएमआर उत्तर शीट के दक्षिणाहस्तिक सर्वोच्च कोण में मुद्रित जगह 5. पर लिखना चाहिए/Question Booklet series code (A/B/C/D/E) printed on the right hand top corner should be written in the OMR answer sheet in the place provided.

市.q.3/P.T.O

- अभ्यर्थी को अपना नाम और क्रमांक(रोल नंबर) प्रश्न पुस्तिका में लिखना चाहिए/Candidates should enter their Name and Roll Number in the Question Booklet.
- औएमआर उत्तर पुस्तिका की सभी प्रविष्टियाँ मात्र नीले/काले बॉल पोइंट पेल से ही करना चाहिए/All entries in the OMR answer sheet should be with blue/black ball point pen only.
- लिखित परीक्षा प्रत्येक पद के लिए निर्धारित योग्यता के आधार पर, वस्तुगत प्रकार के चार उत्तर सूचित, जिसमें मात्र एक ही सुस्पष्ट रहेगा./ The written test will be of objective type based on the qualification prescribed for the post with four answers indicated, of which only one will be unambiguously correct.
- 9. अभ्यर्थी को सही उत्तर चयन करके ओएमआर उत्तर पुस्तिका में दिए निर्देशानुसार नीला/काले बाँल पोइंट पेन द्वारा ओएमआर शीट के अण्डाकार अनुरूप में मार्क करना चाहिए/ Candidates have to select the right answer by marking the corresponding oval on the OMR answer sheet by blue/black ball point pen as per the instructions given in the OMR answer sheet.
- सभी प्रश्न के लिए चार अंक होगा, उत्तर न होने पर शून्य अंक और एक नेगटीय अंक एक गलत उत्तर के लिए/All questions carry four marks each, zero marks for no answer and one negative mark for a wrong answer.
- प्रत्येक प्रश्न के लिए बहुल उत्तर गलत उत्तर माना जाएगा/Multiple answers for a question will be regarded as a wrong answer.
- ओएमआर में मार्किम अत्यंत ध्यान से करना चाहिए। अतिरिक्त ओएमआर शीट नहीं दिया जाएगा/Marking in OMR may be done with utmost care. No spare OMR sheet will be provided.
- परीक्षा होल में कम्प्यूटर, कालकुलेटर्स, मोबाइल फोल, संदर्भग्रंथ किताबें, लोगरिथमिक टेबिल, इलक्ट्रॉलिक गांडजट्स आदि लाने की अनुमति नहीं दी जाएगी/Computers, Calculators, mobile phones, reference books, logarithm table, electronic gadgets etc. will not be allowed inside the Examination Hall.
- पक्ष पुस्तिका में उपलब्ध जगह कच्चे मसीदे के लिए उपयोग किया जा सकता है/Space available in the Question Booklet can be used for rough work.
- 15. परीक्षा की समाप्ति के बाद, ओएमआर शीट को ऊपरी भाग की छिद्रता मार्क के साथ फाइ देना चाहिए और मूल ओएमआर शीट निरीक्षक को देना चाहिए और अनुलिपि अञ्चर्थी के पास रखना चाहिए/On completion of the test, tear the OMR answer sheet along the perforation mark at the top and hand over the original OMR answer sheet to the invigilator and retain the duplicate copy with candidates.
- परीक्षा के पहले के डेड घंटे के दौरान परीक्षा होल में से अञ्चर्थी को बाहर जाने की अनुमति नहीं है/Candidates are not permitted to leave the Examination Hall during the first one and a half hour of the examination.
- अभ्यर्थी जो 1150 घंटे के बाद परीक्षा होल के बाहर जाते हैं, उन्हें प्रश्न पुस्तिका अपने में रखने की अनुमित है/Candidates leaving the examination hall after 1150 hrs will be allowed to retain the Question Booklet.
- परीक्षा के बाद, अञ्चर्यों को औएमआर शीट और प्रवेशपत्र निरीक्षक को देना चाहिए/After the Examination, candidates should hand over OMR Answer Sheet and Admit Card to the Invigilator.

\*8\*8\*\*\*\*\*

## तकनीशियन 'बी' (इलक्ट्रॉनिक यांत्रिक) के पद के चयन हेतु लिखित परीक्षा WRITTEN TEST FOR SELECTION TO THE POST OF

## TECHNICIAN 'B' (Electronic Mechanic)

| 1. | यदि 25 एस में एक चालक से 100 कूलॉम चार्ज गुज़रता है तो चालक में होनेवाली धारा है/If 100 coulomb of charge passes through a conductor in 25 s, the current in the conductor is                                                                                                                |                                                                             |              |               |              |                |            |                      |     |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------|---------------|--------------|----------------|------------|----------------------|-----|--|--|
|    |                                                                                                                                                                                                                                                                                              | 1A                                                                          |              | 4A            | (c)          | 10A            | (d)        | 2.5A                 |     |  |  |
| 2. | यदि                                                                                                                                                                                                                                                                                          | एक बैटरी की                                                                 | धारिता ४०    | 00 एमएएच है   | तो वह        | के लिए         | ४ आम्पिर   | ार प्रवाह की आपूर्ति | कर  |  |  |
|    | सक                                                                                                                                                                                                                                                                                           | ता है/If the ca                                                             | apacity of a | battery is 40 | 00 mAh, it e | can supply 4 A | mpere curi | ent for              |     |  |  |
|    | (a)                                                                                                                                                                                                                                                                                          | 120 min                                                                     |              |               | (b)          | 240 min        |            |                      |     |  |  |
|    | (c)                                                                                                                                                                                                                                                                                          | 60 min                                                                      |              |               | (d)          | 30 min         |            |                      |     |  |  |
| 3. | एक                                                                                                                                                                                                                                                                                           | एक साइन तरंग का पीक दु पीक मूल्य 300 V है। उसका आरएमएस मूल्य है/The peak to |              |               |              |                |            |                      |     |  |  |
|    | pea                                                                                                                                                                                                                                                                                          | k value of a s                                                              | sine wave i  | 300 V. Its m  | ns value is  |                |            |                      |     |  |  |
|    | (a)                                                                                                                                                                                                                                                                                          | 70.72 V                                                                     |              |               | (b)          | 141.4 V        |            |                      |     |  |  |
|    | (c)                                                                                                                                                                                                                                                                                          | 14.14 V                                                                     |              |               | (d)          | 106.08 V       |            |                      |     |  |  |
| 4. | एक फोरवेर्ड पोटनश्यल 7V को श्रृंखला में 1 K $\Omega$ रोधक के साथ शॉटकी डायोड से बना हुआ नेटवर्क के आडे पर अनुप्रयुक्त किया जाता है/A forward potential of 7 V is applied across a network consisting a schottky diode with 1 K $\Omega$ resistor in series. The current through the diode is |                                                                             |              |               |              |                |            |                      |     |  |  |
|    |                                                                                                                                                                                                                                                                                              | 10 mA                                                                       | (b)          | 7.3 mA        | (c)          | 6.8 mA         | (d)        | 0 mA                 |     |  |  |
| 5. | 111                                                                                                                                                                                                                                                                                          | 11100 का दशमलव तुल्यांक है/The decimal equivalent of 11100 is               |              |               |              |                |            |                      |     |  |  |
|    |                                                                                                                                                                                                                                                                                              | 23                                                                          | (b)          | 31            | (c)          | 27             | (d)        | 28                   |     |  |  |
| 6. | 16 से 1 बहुसंकेतक के लिए आवश्यक नियंत्रण रेखा की संख्या है/Number of control lines required for 16 to 1 multiplexer is                                                                                                                                                                       |                                                                             |              |               |              |                |            |                      |     |  |  |
|    | (a)                                                                                                                                                                                                                                                                                          | 3                                                                           | (b)          | 4             | (c)          | 8              | (d)        | 2                    |     |  |  |
| 7. | एक 6 बिट काउन्टर 0,1,2, n तक गिनने के लिए उपयोग किया जाता है। n का मूल्य है/ A 6 bit counter is used to count from 0,1,2,n. The value of n is                                                                                                                                                |                                                                             |              |               |              |                |            |                      |     |  |  |
|    | (a)                                                                                                                                                                                                                                                                                          | 16                                                                          | (b)          | 15            | (c)          | 32             | (d)        | 63                   |     |  |  |
| 8. |                                                                                                                                                                                                                                                                                              | 0 Hz  की आवृत्ति<br>1000 Hz, the tir                                        |              |               | ए, समय अव    | 南              | For a sine | wave with a frequen  | cy  |  |  |
|    | (a)                                                                                                                                                                                                                                                                                          | $1000~\mathrm{ms}$                                                          | (b)          | 100 ms        | (c)          | 10 ms          | (d)        | 1 ms                 |     |  |  |
| A  |                                                                                                                                                                                                                                                                                              |                                                                             |              |               | 3            |                | 6          | 86 TN(ELE.MEC        | CH) |  |  |

| 9.  | <ol> <li>परंपरागत रैश्विक पावर आपूर्ति के ऊपर एसएमपीएस की प्रतिकृतता है/The disadvantage of SMPS over<br/>conventional linear power supply is</li> </ol> |                                                                                       |          |                      |            |                                                     |                    |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------|----------------------|------------|-----------------------------------------------------|--------------------|--|--|--|--|
|     | (a)                                                                                                                                                      | निम्न क्षमता/L                                                                        |          | DOMEST CONTRACT      |            |                                                     |                    |  |  |  |  |
|     | (b) समष्टि घटक/Bulky components                                                                                                                          |                                                                                       |          |                      |            |                                                     |                    |  |  |  |  |
|     | (c) शक्तिशाली विद्युत चुम्बकीय व्यतिकरण क्षेत्र जनित करता है/Generates strong electromagnetic interference field                                         |                                                                                       |          |                      |            |                                                     |                    |  |  |  |  |
|     | (d)                                                                                                                                                      | निम्न तागत/La                                                                         | w cos    | t                    |            |                                                     |                    |  |  |  |  |
| 10. | एक                                                                                                                                                       | दोलिय जो अच्छी उ                                                                      | भावृत्ति | स्थिरता देता है/1    | he oscill  | ator that gives good frequ                          | ency stability is  |  |  |  |  |
|     | (a)                                                                                                                                                      | हार्टले दोलित्र /Hartl                                                                | ey Os    | cillator             | (b)        | कोलपिट्टस दोलित्र /Colpitts Oscillator              |                    |  |  |  |  |
|     | (c)                                                                                                                                                      | क्रिस्टल दोलित्र /Cry                                                                 | 170      |                      | (d)        | आर सी फेज़ शिफ्ट दोलित्र /RC phase shift oscillator |                    |  |  |  |  |
| 11. | धारि                                                                                                                                                     | धारिता रियाक्टन्स का यूनिट है/The unit of capacitive reactance is                     |          |                      |            |                                                     |                    |  |  |  |  |
|     | (a)                                                                                                                                                      | ऑम/ohm                                                                                | (b)      | फारद/farad           | (c)        | आम्पियर/ ampere                                     | (d) वाल्ट/volt     |  |  |  |  |
| 12. | बाई                                                                                                                                                      | बाईस्टेबिल बहुकंपित्र/The bistable multivibrator                                      |          |                      |            |                                                     |                    |  |  |  |  |
|     | (a)                                                                                                                                                      | (a) दो स्थिर अवस्था है/has two stable states                                          |          |                      |            |                                                     |                    |  |  |  |  |
|     | (b)                                                                                                                                                      | (b) एक स्थिर अवस्था है/ has one stable state                                          |          |                      |            |                                                     |                    |  |  |  |  |
|     | (c)                                                                                                                                                      | (c) स्वचालित है/ is free running                                                      |          |                      |            |                                                     |                    |  |  |  |  |
|     | (d)                                                                                                                                                      | उपर्युक्त में कोई                                                                     | नहीं/n   | one of the above     |            |                                                     |                    |  |  |  |  |
| 13. | एक                                                                                                                                                       | एक टनल डायोड के पीक पोइंट और वाली पोइंट के बीच, क्षेत्र है/Between the peak point and |          |                      |            |                                                     |                    |  |  |  |  |
|     | the                                                                                                                                                      | valley point of tunne                                                                 | l diode  | e, there is regi     | on         |                                                     |                    |  |  |  |  |
|     | (a)                                                                                                                                                      | संतृप्ति/Saturatio                                                                    | n        |                      |            |                                                     |                    |  |  |  |  |
|     | (b)                                                                                                                                                      | ऋणात्मक प्रतिरो                                                                       | M/No     | egative resistance   | :          |                                                     |                    |  |  |  |  |
|     | (c)                                                                                                                                                      | कट-ऑफ/Cut-o                                                                           | ff ·     |                      |            |                                                     |                    |  |  |  |  |
|     | (d)                                                                                                                                                      | उपर्युक्त में कोई                                                                     | नहीं /1  | lone of the above    | •          |                                                     |                    |  |  |  |  |
| 14. | एक                                                                                                                                                       | कार्बन प्रतिरोधक रि                                                                   | तेसमें त | नाल, वायलट, ओर्रे    | ज और       | सोने रंग बैंड है, उसका प्र                          | तिरोध मूल्य है/The |  |  |  |  |
|     | rese                                                                                                                                                     |                                                                                       | bon res  | sistor having red, v | riolet, or | ange and gold colour band                           | lis                |  |  |  |  |
|     | (a)                                                                                                                                                      | $2.7 \text{ k}\Omega \pm 5\%$                                                         |          |                      | (b)        |                                                     |                    |  |  |  |  |
|     | (c)                                                                                                                                                      | $270 \text{ k}\Omega \pm 10\%$                                                        |          |                      | (d)        | $27\Omega \pm 5\%$                                  |                    |  |  |  |  |
| A   |                                                                                                                                                          |                                                                                       |          |                      | 4          |                                                     | 686 TN(ELE.MECH)   |  |  |  |  |

| 15. | पाव                                                                                                                        | र में 10,000,000 वा                                                                                | ली लि   | धिको              | db में ।  | प्रकट किया जात  | T 孝/A gain    | 10,000,000 times in        |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------|-------------------|-----------|-----------------|---------------|----------------------------|--|--|--|
|     | pow                                                                                                                        | ver is expressed as                                                                                |         | db                |           |                 |               |                            |  |  |  |
|     | (a)                                                                                                                        | 60                                                                                                 | (b)     | 80                | (c)       | 70              | (d)           | 120                        |  |  |  |
| 16. | एमि                                                                                                                        | टर फॉलोवर के इनपृ                                                                                  | ुट और   | : आउटपुट के बीच   | ा का कल   | । विस्थापन      |               | The phase shift            |  |  |  |
|     | bety                                                                                                                       | between input and output of an emitter follower is                                                 |         |                   |           |                 |               |                            |  |  |  |
|     |                                                                                                                            |                                                                                                    |         |                   |           |                 |               |                            |  |  |  |
|     | (a)                                                                                                                        | 00                                                                                                 | (b)     | 1800              | (c)       | 60°             | (d)           | 900                        |  |  |  |
| 17. | एक अर्धचालक युक्ति जो दोनों दिशाओं में चालन कर सकता है/The semiconductor device that can conduct                           |                                                                                                    |         |                   |           |                 |               |                            |  |  |  |
|     | in b                                                                                                                       | oth direction                                                                                      |         |                   |           |                 |               |                            |  |  |  |
|     | (a)                                                                                                                        | ट्रयाक/TRIAC                                                                                       |         |                   | (b)       | एससीआर/ऽ        | CR            |                            |  |  |  |
|     | (c)                                                                                                                        | बीजेटी/BJT                                                                                         |         |                   | (d)       | उपर्युक्त में व | वेई नहीं/ne   | one of the above           |  |  |  |
| 18. | एक                                                                                                                         | टान्सफोर्मर में 100                                                                                | 2 स्रोत | से 40 Ω भार समेर  | न करने है | न आवश्यक वर्तन  | अस्यात/ ११    | ne turns ratio required to |  |  |  |
|     |                                                                                                                            | ch 10 Ω source to 4                                                                                |         |                   |           | 3-11-1-1        |               | ie mini men required to    |  |  |  |
|     | (a)                                                                                                                        | 1:8                                                                                                | (b)     | 1:2               | (c)       | 1:4             | (d)           | 1:16                       |  |  |  |
| 19. | प्रत्येक $10~\Omega$ का दस प्रतिरोधक समांतर रूप में संयोजित है, समतुल्य प्रतिरोधकता /Ten resistors each of $10~\Omega$ are |                                                                                                    |         |                   |           |                 |               |                            |  |  |  |
|     | com                                                                                                                        | connected in parallel, the equivalent resistance is                                                |         |                   |           |                 |               |                            |  |  |  |
|     | (a)                                                                                                                        | 10 Ω                                                                                               | (b)     | 100 Ω             | (c)       | 1 Ω             | (d)           | $1 \text{ k}\Omega$        |  |  |  |
| 20. | एक                                                                                                                         | एक शृंखला आरएलसी परिपथ में R=1kΩ, L=10 μH, C=1 μf एवं स्रोत वोल्टता =10 V है, अनुनाद में परिपथ में |         |                   |           |                 |               |                            |  |  |  |
|     | प्रवा                                                                                                                      | き き/In an series RI                                                                                | .C circ | uit, R=1kΩ, L=10  | μH, C=    | l μf and source | voltage =10   | V, the current in the      |  |  |  |
|     | circ                                                                                                                       | uit at resonance is                                                                                |         |                   |           |                 |               |                            |  |  |  |
|     | (a)                                                                                                                        | 10 mA                                                                                              | (b)     | 100 mA            | (c)       | 20 mA           | (d)           | 1 mA                       |  |  |  |
| 21. | एक                                                                                                                         | ओपी-एएमपी                                                                                          |         | प्रवर्धन के लिए अ | भिकल्पित  | ₹/An Op-An      | np is designe | ed to amplify              |  |  |  |
|     | (a)                                                                                                                        | मात्र एसी वोल्टत                                                                                   | Π/AC    | voltage only      |           |                 |               |                            |  |  |  |
|     | (b)                                                                                                                        | मात्र डीसी वोल्टर                                                                                  | HI/DO   | C voltage only    |           |                 |               |                            |  |  |  |
|     | (c)                                                                                                                        | एसी और डीसी व                                                                                      | वोल्टत  | ा दोनॉ/Both AC    | and DO    | 2 voltage       |               |                            |  |  |  |
|     | (d)                                                                                                                        | मात्र पल्स सिग्न                                                                                   | ल/Pu    | lse signal only   |           |                 |               |                            |  |  |  |
| A   |                                                                                                                            |                                                                                                    |         |                   | 5         |                 |               | 86 TN/ELE MECU)            |  |  |  |

| 22. | 640                                                                                               | आदरा आपा-एए                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | मपा का   | व्यपुट प्रातराच                           | ********     | F/The inp       | ut resistance  | of an ideal Op-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ump is |  |  |
|-----|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------|--------------|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
|     | (a)                                                                                               | शून्य/Zero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                                           | (b)          | अनंत/Infin      | ity            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (c)                                                                                               | 1 kΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                                           | (d)          | $100~k\Omega$   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| 23. |                                                                                                   | ं श्रृंखला अनुनादी<br>uit V <sub>C</sub> =100V, V <sub>L</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                                           |              |                 | iोल्टता/In a c | ertain series reso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nant   |  |  |
|     | (a)                                                                                               | 100 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b)      | 135 V                                     | (c)          | 65 V            | (d)            | 35 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
| 24. |                                                                                                   | यदि एक ट्रान्सिस्टर की कलेक्टर धारा $10~mA$ और वैस धारा $100~\mu A$ , तो उसकी बीटा क्या है/If the collector current of a transistor is $10~mA$ and the base current is $100~\mu A$ , then what is its beta?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (a)                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b)      | 100/101                                   | (c)          | 100             | (d)            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |  |  |
| 25. | coil                                                                                              | स्य प्रेरकत्य 16 mH और 25 mH वाले दो कुंडली अन्योन्य युग्मित है। उच्चतम संभाद्य अन्योन्य प्रेरकत्य है/ Two<br>coils having self inductances of 16 mH and 25 mH are mutually coupled. The maximum possible mutual<br>inductance is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (a)                                                                                               | 40 mH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (b)      | 20 mH                                     | (c)          | 10 mH           | (d)            | 5 mH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |  |  |
| 26. |                                                                                                   | एक दो चरण आर सी युग्मित प्रवर्धक को चरण लब्धि 30 और 40 है, उसकी समस्त लब्धि है/A two<br>stage RC coupled amplifier has stage gains of 30 and 40. The overall gain is ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (a)                                                                                               | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (b)      | 120                                       | (c)          | 1200            | (d)            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |  |  |
| 27. | सेतु दिष्टकारी में अचालकीय डायोड का पीआईवी/PIV of a non conducting diode in a bridge rectifier is |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (a)                                                                                               | (a) एसी इनपुट के शिखर मूल्य की दुगुना है/Twice the peak value of a.c. input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (b)                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (c)                                                                                               | and the second field and a contract the second seco |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (d)                                                                                               | एसी इनपुट क                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | । शिखर   | मूल्य है/Peak                             | value of a   | .c. input       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| 28. | एक                                                                                                | प्रवर्धक में नेगटी                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | व फीड बै | क∕The negative                            | e feedback i | in an amplifier |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (a)                                                                                               | लब्धि को बढ़ा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ता है/In | creases the gai                           | n            |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (b)                                                                                               | वैंड चौंडाई को                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | eta e san unes en en e <del>s</del> tere. |              | dth             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (c)                                                                                               | लब्धि स्थिरता                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                                           |              |                 |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
|     | (d)                                                                                               | उपर्युक्त में कोई                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                           |              | 328 VANDA (#2   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |  |  |
| A   |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | 6            |                 | 68             | 86 TN(ELE,MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ECH)   |  |  |
|     |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                           | 1            |                 | 94             | THE RESERVE AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDR | -      |  |  |

| 29. | संघ   | रित्र की धारिता अभिकारकता है/Capacitive reactance of a capacitor is                                |
|-----|-------|----------------------------------------------------------------------------------------------------|
|     | (a)   | $\frac{1}{2\pi fC}$                                                                                |
|     | (b)   | $\frac{Cf}{2\pi}$                                                                                  |
|     | (c)   | $\frac{2\pi}{fC}$                                                                                  |
|     | (d)   | $\frac{1}{2\pi\sqrt{fC}}$                                                                          |
|     |       |                                                                                                    |
| 30. | शोट   | की डायोड के लिए/Schottky diode has                                                                 |
|     | (a)   | वोलटेज में निम्न काट/Low cut in voltage                                                            |
|     | (b)   | टाइम में धीमा टेर्न/Slow turn on time                                                              |
|     | (c)   | भारित डोपन पीएन जंक्शन/Heavily doped p-n junction                                                  |
|     | (d)   | उपर्युक्त में कोई नहीं/None of the above                                                           |
| 31. | बीजे  | टी है/BJT is a                                                                                     |
|     | (a)   | वोल्टला नियंत्रक युक्ति/Voltage controlled device                                                  |
|     | (b)   | . प्रवाह नियंत्रित युक्ति/Current controlled device                                                |
|     | (c)   | अति उच्च इनपुट प्रतिबाधा युक्ति/Very high input impedance device                                   |
|     | (d)   | उपर्युक्त में कोई नहीं/None of the above                                                           |
| 32. | वैरेव | टर डायोड सामान्यतः के लिए उपयोगित है/Varactor diode is commonly used for                           |
|     | (a)   | वाल्टला नियमितता/Voltage regulation                                                                |
|     | (b)   | इलक्ट्रॉनिक ट्यूर्निंग/Electronic tuning                                                           |
|     | (c)   | डायोड संरचन/Diode detection                                                                        |
|     | (d)   | उपर्युक्त में कोई नहीं/None of the above                                                           |
| 33. | अनुव  | नाद में, श्रृंखला आरएलसी परिपथ की प्रतिबाधा है/At resonance, the impedance of a series RLC circuit |
|     | îs    |                                                                                                    |
|     | (a)   | R                                                                                                  |
|     | (b)   | X <sub>L</sub><br>X <sub>C</sub>                                                                   |
|     | (d)   | उपर्युक्त में कोई नहीं/None of the above                                                           |
|     | Xelia | # U.M. 10500000000000000000000000000000000000                                                      |
| A   |       | 7 686 TN(ELE.MECH)                                                                                 |

- 34. श्रृंखला आरएलसी परिपय का कुल परिपय प्रतिबाधा ------ है/The total circuit impedance of a series RLC circuit is
  - (a)  $\sqrt{R^2 + (X_L X_C)^2}$
  - (b)  $\frac{1}{2\pi\sqrt{LC}}$
  - (c)  $X_L + X_C$
  - (d) उपर्युक्त में कोई नहीं/None of the above
- 35. 10 Ω प्रतिरोध वाला एक दिया हुआ तांबा तार को उसकी मूल लंबाई को दुगुना बनाने हेतु खींचकर बढ़ाया जाता है उसकी नया प्रतिरोध ———— है/A given copper wire of 10 Ω resistance is stretched to double its original length. Its new resistance is
  - (a) 10 Ω
- (b) 20 Ω
- (c) 30 Ω
- (d) 40 Ω
- 36. तांबा तार का प्रतिरोध तब बढ़ता है जब-----/Resistance of a copper wire increases when ........
  - (a) लंबाई घटता है/Length decreases
  - (b) ताप घटता है/Temperature decreases
  - (c) व्यास घटता है/Diameter decreases
  - (d) उपर्युक्त में कोई नहीं/None of the above
- 37. एक इलेक्ट्रान का चार्ज है/The charge of an electron is
  - (a) 1.602\*10<sup>-19</sup> ┯लम/coulomb

  - (d) उपर्युक्त में कोई नहीं/None of the above
- 38. जब 5 A प्रवाह आपूर्ति करते समय, ईएमएफ 2 V और आंतरिक प्रतिरोध 0.1 Ω वाले एक सेल का टर्मिनल विभव भेद है/The terminal potential difference of a cell of emf 2 V and internal resistance 0.1 Ω when supplying a current of 5 A will be
  - (a) 2.5 V
  - (b) 1.5 V
  - (c) 10 V
  - (d) उपर्युक्त में कोई नहीं/None of the above

| A   |                                                                                                                |                                                                                                                |                                         | 9                    |                    | 686 TN(ELE.MECH)                      |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|--------------------|---------------------------------------|--|--|--|--|--|--|
|     |                                                                                                                |                                                                                                                |                                         | 25%                  |                    |                                       |  |  |  |  |  |  |
|     | (c)                                                                                                            | 125                                                                                                            |                                         | (d)                  | 105                |                                       |  |  |  |  |  |  |
|     | (a)                                                                                                            | 120                                                                                                            |                                         | (b)                  | 150                |                                       |  |  |  |  |  |  |
|     |                                                                                                                |                                                                                                                | hose sum is 15                          |                      | 2000               |                                       |  |  |  |  |  |  |
| 44. | तीन                                                                                                            | लगातार वि                                                                                                      | षम संख्या जिसकी र                       | योगफल 15 है उसक      | ा गुणनफल है/Th     | e product of three consecutive        |  |  |  |  |  |  |
|     | (c)                                                                                                            | 6 cm                                                                                                           |                                         | (d)                  | 9/7 cm             |                                       |  |  |  |  |  |  |
|     | (a)                                                                                                            | 9 cm                                                                                                           |                                         | (b)                  | 3 cm               |                                       |  |  |  |  |  |  |
|     |                                                                                                                |                                                                                                                | C1007                                   | 100 K                | 2                  |                                       |  |  |  |  |  |  |
|     |                                                                                                                | e sphere wi                                                                                                    |                                         | नाराक का निर्णया है। | -11/11 the volume  | or a sphere is 1921/cc. The radius    |  |  |  |  |  |  |
| 43. | एक                                                                                                             | गोलक का                                                                                                        | आयतन ७९२/७०० है ।                       | गोलक की जिल्ला हो    | Ill /If the volume | of a sphere is 792/7cc. The radius    |  |  |  |  |  |  |
|     | (c)                                                                                                            | 20 cm                                                                                                          |                                         | (d)                  | 5 cm               |                                       |  |  |  |  |  |  |
|     | (a)                                                                                                            | 10 cm                                                                                                          |                                         | (b)                  | 15 cm              |                                       |  |  |  |  |  |  |
|     |                                                                                                                | angle.                                                                                                         |                                         |                      | , and no parimeter | ve van 1 ma niv raum vi me            |  |  |  |  |  |  |
|     |                                                                                                                | करें/The width of a rectangle is 10 cm less than its length, and its perimeter is 60 cm. Find the width of the |                                         |                      |                    |                                       |  |  |  |  |  |  |
| 42. | एक                                                                                                             | आयत की                                                                                                         | चौडाई उनकी लंबाई र                      | से 10 cm कम है औ     | र उसका परिमाण      | 60 cm है। आयत की चौडाई प्राप्त        |  |  |  |  |  |  |
|     | (c)                                                                                                            | 7.7 mA                                                                                                         |                                         | (d)                  | 0 mA               |                                       |  |  |  |  |  |  |
|     | (a)                                                                                                            | 10 mA                                                                                                          |                                         | (b)                  | 7.3 mA             |                                       |  |  |  |  |  |  |
|     |                                                                                                                |                                                                                                                | diode. The current the                  |                      |                    |                                       |  |  |  |  |  |  |
|     | है। डायोड से होनेवाला प्रवाह है/A forward potential of 8V is applied to a Ge diode. A resistance of 1 KΩ is in |                                                                                                                |                                         |                      |                    |                                       |  |  |  |  |  |  |
| 41. | 8V 3                                                                                                           | का एक फोर                                                                                                      | विड पोटन्शियल जीई                       | डायोड को अनुप्रयुक्त | करता है। 1 ΚΩ      | की प्रतिरोध डायोड के साथ श्रृंखला में |  |  |  |  |  |  |
|     | (d)                                                                                                            | उपर्युक्त व                                                                                                    | मैं कोई नहीं/None of                    | f the above          |                    |                                       |  |  |  |  |  |  |
|     | (c)                                                                                                            | $(R_A + 2$                                                                                                     |                                         |                      |                    |                                       |  |  |  |  |  |  |
|     | (b)                                                                                                            | 1.44                                                                                                           |                                         |                      |                    |                                       |  |  |  |  |  |  |
|     | (a)                                                                                                            | $\frac{1.44}{(R_A+2R_B)}$<br>$\frac{(R_A+2R_B)}{(R_A+2R_B)}$                                                   |                                         |                      |                    |                                       |  |  |  |  |  |  |
| 40. | 555                                                                                                            | 555 एस्टेबिल बहुकंपित्र की आवृत्ति का सूत्र है/The formula for the frequency of a 555 astable multivibrator    |                                         |                      |                    |                                       |  |  |  |  |  |  |
|     |                                                                                                                | 211040E015                                                                                                     | 0.0000000000000000000000000000000000000 |                      |                    |                                       |  |  |  |  |  |  |
|     | (d)                                                                                                            | $\frac{1}{2\pi i (fL)}$                                                                                        |                                         |                      |                    |                                       |  |  |  |  |  |  |
|     | (c)                                                                                                            | $\frac{1}{2\pi f L}$                                                                                           |                                         |                      |                    |                                       |  |  |  |  |  |  |
|     | (b)                                                                                                            | $\frac{DL}{fL}$                                                                                                |                                         |                      |                    |                                       |  |  |  |  |  |  |
|     | (a)                                                                                                            | $2\pi f L$                                                                                                     |                                         |                      |                    |                                       |  |  |  |  |  |  |
| 39. | प्रस्व                                                                                                         | क का प्ररण                                                                                                     | अधिकारकता/Inducti                       | ve reactance of an i | nductor is         |                                       |  |  |  |  |  |  |

| 45. | एक                                                                                                      | सीधे सड़क में दो                         | लगातार  | किलोमीटर स्टोन         | न से एक                                           | गुब्बारे का उल्ल   | यन कोण 3     | 0° और 60° है। तब भू से                      |  |  |
|-----|---------------------------------------------------------------------------------------------------------|------------------------------------------|---------|------------------------|---------------------------------------------------|--------------------|--------------|---------------------------------------------|--|--|
|     | ऊपर गुब्बारे की ऊँचाई होगी (कल्पना करें गुब्बारा दो माइल स्टोन के बीच है)/If the angles of elevation of |                                          |         |                        |                                                   |                    |              |                                             |  |  |
|     |                                                                                                         |                                          |         |                        |                                                   |                    |              | respectively, then the the two mile stones) |  |  |
|     | (a)                                                                                                     | √3/2 km                                  |         |                        | (b)                                               | $4/\sqrt{3}$ km    |              |                                             |  |  |
|     | (c)                                                                                                     | 2√3km                                    |         |                        | (d)                                               | 3√3 km             |              |                                             |  |  |
| 46. | υ 3                                                                                                     | ौर बी पार्श्व के एक                      | आयत     | का परिमाप है/।         | Perimeter of rectangle of sides a & b is given by |                    |              |                                             |  |  |
|     | (a)                                                                                                     | 2(a+b)                                   |         |                        | (b)                                               | 4(a+b)             |              |                                             |  |  |
|     | (c)                                                                                                     | a x b                                    |         |                        | (d)                                               | a + b              |              |                                             |  |  |
| 47. | एक                                                                                                      | समकोण त्रिकोण व                          | हा दो प | ार्थ 15cm और 2         | 1考m2 OS                                           | उसका कर्ण प्राप्त  | करें/The t   | wo sides in a right                         |  |  |
|     | angl                                                                                                    | ed triangle are 15 o                     | m and   | 20 cm each. Find       | I its hypot                                       | tenuse?            |              |                                             |  |  |
|     | (a)                                                                                                     | 35 cm                                    | (b)     | 15 cm                  | (c)                                               | 20 cm              | (d)          | 25 cm                                       |  |  |
| 48. | यदि                                                                                                     | $x = 3 & y = 4, x^2 + $                  | 3xy+y²  | का मूल्य प्राप्त करें/ | /If x = 3                                         | & y = 4, Find the  | e value of x | 2+3xy+y2                                    |  |  |
|     | (a)                                                                                                     | 71                                       | (b)     | 61                     | (c)                                               | 51                 | (d)          | 81                                          |  |  |
| 49. | digit expressed by 4 binary digits. (a) बीसीडी कोड/BCD code                                             |                                          | eits.   | (b)                    | बैनरी कोंड/Binary code                            |                    |              |                                             |  |  |
|     | (c)                                                                                                     | एएससाजाइजाइ                              | 415/    | ASCII code             | (d)                                               | ग्रे कोड/Gray      | y coue       |                                             |  |  |
| 50. | एक                                                                                                      | आरसी फेस शिफ्ट                           | दोलित्र | में फीडबेक वोल्त       | टता का पे                                         | 展                  | आचरण स्ते    | टेज आरसी फेस शिफ्ट                          |  |  |
|     |                                                                                                         | र्क शिफ्ट किया ज<br>with a three st      |         |                        |                                                   | stor, the phase of | the feedba   | ck voltage is shifted by                    |  |  |
|     | (a)                                                                                                     | 0 degree                                 |         |                        | (b)                                               | 60 degree          |              |                                             |  |  |
|     | (c)                                                                                                     | 90 degree                                |         |                        | (d)                                               | 180 degree         |              |                                             |  |  |
| 51. |                                                                                                         | HP वाला 4 मोटर ।<br>lectric power will b |         | 7                      | 1. 1.50%                                          |                    |              | राता है/How many units                      |  |  |
|     | (a)                                                                                                     | 11.768 यूनिट/u                           |         |                        | (b)                                               | 11768 यूनिट        |              |                                             |  |  |
|     | (c)                                                                                                     | 1.1768 यूनिट/                            |         |                        | (d)                                               | 117.68 यूनिट       |              |                                             |  |  |
| A   |                                                                                                         |                                          |         |                        | 10                                                |                    | (            | 586 TN(ELE.MECH)                            |  |  |
|     |                                                                                                         |                                          |         |                        |                                                   |                    |              |                                             |  |  |

|     | 16                                                                                                                                                      | Ame, ve lege                           | र डासा र               | ात 15V होगा                     | The value of               | Courset limiting                   | a second to the | होगा यदि<br>or a stack of 4 LEDs |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|---------------------------------|----------------------------|------------------------------------|-----------------|----------------------------------|--|--|
|     | (a)                                                                                                                                                     | 10 Ω                                   | will be                | if the LE                       | Ds are of 3\<br>(b)<br>(d) | 7, 3mA and DC:<br>100 Ω<br>10 kΩ   | source is 15    | SV.                              |  |  |
| 53  | . लो<br>de                                                                                                                                              | जिक गेट का कौन<br>signated as univ     | ा-सा सेट<br>ersal ga   | यूनिवर्सल गेट<br>les?           | से पदनामि                  | त है/Which of t                    | the sets of     | logic gates are                  |  |  |
|     | (c)                                                                                                                                                     |                                        | D                      |                                 | (b)                        | XOR, NOR, I                        |                 |                                  |  |  |
| 54. | दिए हुए माडुल तकनीक में कौन निम्नतम बैंड चौडाई लेता है/The modulation technique that takes the lowest bandwidth among the given                         |                                        |                        |                                 |                            |                                    |                 |                                  |  |  |
|     | (a)                                                                                                                                                     | AM                                     | (b)                    | FM                              | (c)                        | DSB-SC                             | (d)             | SSB-SC                           |  |  |
| 55. | एक 2 इनपुट लोजिक गेट जिल्हें सदैव उच्च आउटपुट है, जब उनका इनपुट समान है/A 2 input logic gate which has always a high output when its inputs are same is |                                        |                        |                                 |                            |                                    |                 |                                  |  |  |
|     | (a)                                                                                                                                                     | NOR                                    | (b)                    | NAND                            | (c)                        | XOR                                | (d)             | XNOR                             |  |  |
| 56. | एचआरसी एक प्रकार का हैं/HRC is a type of                                                                                                                |                                        |                        |                                 |                            |                                    |                 |                                  |  |  |
|     | (a)                                                                                                                                                     | फ्यूस/Fuse                             |                        |                                 | (b)                        | स्विच/switch                       |                 |                                  |  |  |
|     | (c)                                                                                                                                                     | कपासिटर/capa                           | citor                  |                                 | (d)                        | रिले/relay                         |                 |                                  |  |  |
| 57. | एक जीनर रेगुलेटर में, भार प्रवाह में परिवर्तन में परिवर्तन उत्पादित करता है/In a zener regulator, the change in load current produces, change in        |                                        |                        |                                 |                            |                                    |                 |                                  |  |  |
|     | (a)                                                                                                                                                     | ज़ीनर चाल्टता/z                        | ener volta             | ige                             |                            |                                    |                 |                                  |  |  |
|     | (b)                                                                                                                                                     | ज़ीनर प्रवाह/zen                       | er current             |                                 |                            |                                    |                 |                                  |  |  |
|     |                                                                                                                                                         | एवं बी/a&b                             |                        |                                 |                            |                                    |                 |                                  |  |  |
|     | (d)                                                                                                                                                     | उपर्युक्त में कोई व                    | 形 /none                | of the above                    |                            |                                    |                 |                                  |  |  |
| 58. | दिए<br>given                                                                                                                                            | हुए वाल्टता के लि<br>voltage, four hea | ए, चार त<br>ting coils | गपन कुंडली सं<br>will produce n | योजित करते<br>ninimum hea  | ने समय न्यूनतम<br>it when connecte | ा ऊष्मा उत      | पादित करेंगे/For a               |  |  |
|     | (a)                                                                                                                                                     | सभी समांतर/all                         | in paralle             | d                               |                            |                                    |                 |                                  |  |  |
|     |                                                                                                                                                         | सभी शृंखला में/                        |                        |                                 |                            |                                    |                 |                                  |  |  |
|     |                                                                                                                                                         | दो समांतर युगल                         |                        |                                 | allel pairs in             | series                             |                 |                                  |  |  |
|     | (d)                                                                                                                                                     | एक युगल समांतर                         | और अ                   | य दो शृंखला                     | में /one pai               | r in parallel with                 | the other to    | wo in series                     |  |  |

| 59. | 502                                                                                                         | र्न का एकल परत कुंडली की प्रेरकता 5 mH है।    | यदि टर्न र | ंख्या दुगुना बनाया जाता है तो कुंडली की प्रेरकता  |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------|---------------------------------------------------|--|--|--|--|--|--|
|     | होगा/ The inductance of a single layer coil of 50 turns is 5 mH. If the no. of turns is doubled, inductance |                                               |            |                                                   |  |  |  |  |  |  |
|     | of co                                                                                                       | oil will become                               |            |                                                   |  |  |  |  |  |  |
|     | (a)                                                                                                         | 2.5 mH                                        | (b)        | 5 mH                                              |  |  |  |  |  |  |
|     | (c)                                                                                                         | 10 mH                                         | (d)        | 20 mH                                             |  |  |  |  |  |  |
| 60. | 900                                                                                                         | MHz के रेडियों तरंग विकिरण करने के लिए हर्    | ंज प्रसारि | त ऐन्टेना की लंबाई क्या होनी चाहिए/What should be |  |  |  |  |  |  |
|     | the I                                                                                                       | ength of Hertz transmitting Antenna for rad   | iating rac | lio waves of 900 MHz                              |  |  |  |  |  |  |
|     | (a)                                                                                                         | 16.7 cm                                       |            |                                                   |  |  |  |  |  |  |
|     | (b)                                                                                                         | 1.67 cpm                                      |            |                                                   |  |  |  |  |  |  |
|     | (c)                                                                                                         | 8.35 cm                                       |            |                                                   |  |  |  |  |  |  |
|     | (d)                                                                                                         | उपर्युक्त में कोई नहीं/None of the abov       | re         |                                                   |  |  |  |  |  |  |
| 61. | एक                                                                                                          | समांतर अनुनादी वैंडपास फिलटर का अनुन          | ाद आवृत्ति | ने 20 KHz है और उनका बैंड विस्तार 2 KHz है।       |  |  |  |  |  |  |
|     | उसकी ऊपरी कट आफ आवृत्ति हैं/The resonant frequency of a parallel resonant bandpass filter is 20 KHz and its |                                               |            |                                                   |  |  |  |  |  |  |
|     | bandwith is 2 KHz. Its upper cutoff frequency is                                                            |                                               |            |                                                   |  |  |  |  |  |  |
|     | (a)                                                                                                         | 19 KHz                                        | (b)        | 22 KHz                                            |  |  |  |  |  |  |
|     | (c)                                                                                                         | 18 KHz                                        | (d)        | 21 KHz                                            |  |  |  |  |  |  |
| 62. | टीआरएफ अभिग्राही का उपयोग उनके कारण सीमित है/The use of TRF receivers is limited                            |                                               |            |                                                   |  |  |  |  |  |  |
|     | because of their                                                                                            |                                               |            |                                                   |  |  |  |  |  |  |
|     | (a)                                                                                                         | दुर्बल तद्रूपला/Poor fidelity                 |            |                                                   |  |  |  |  |  |  |
|     | (b)                                                                                                         | दुर्बल एसएनआर/Poor SNR                        |            |                                                   |  |  |  |  |  |  |
|     | (c)                                                                                                         | दुर्वल सुग्राहिता/Poor sensitivity            |            |                                                   |  |  |  |  |  |  |
|     | (d)                                                                                                         | उपर्युक्त सभी/All of the above                |            |                                                   |  |  |  |  |  |  |
| 63. | एमर                                                                                                         | तीबी में स्वचालित स्विचिंग आफ कार्य           |            | द्वारा निष्पत्न किया जाता है/Automatic switching  |  |  |  |  |  |  |
|     | OFF                                                                                                         | function is accomplished in MCB by            |            |                                                   |  |  |  |  |  |  |
|     | (a)                                                                                                         | रिले/Relay                                    | (b)        | क्लच/clutch                                       |  |  |  |  |  |  |
|     | (c)                                                                                                         | द्वि-धात्विक स्ट्रिप/bimetallic-strip         | (d)        | डायोड/diode                                       |  |  |  |  |  |  |
| 64. | माक                                                                                                         | र्गणी  ऐन्टेना  की  ऊँचाई/The height of Marco | oni Anten  | nna is                                            |  |  |  |  |  |  |
|     | (a)                                                                                                         | λ                                             | (b)        | N2                                                |  |  |  |  |  |  |
|     | (c)                                                                                                         | λ/3                                           | (d)        | λ/4                                               |  |  |  |  |  |  |
| A   |                                                                                                             |                                               | 12         | 686 TN(ELE.MECH)                                  |  |  |  |  |  |  |

| 65  |               | क सवी वोल्टता                                                                    | स्थायीका               | री रि               | मेद्धांत के | आधार पर है/     | A servo voltage st         | abiliser is base |  |  |  |
|-----|---------------|----------------------------------------------------------------------------------|------------------------|---------------------|-------------|-----------------|----------------------------|------------------|--|--|--|
|     | Of            | Of the principle of                                                              |                        |                     |             |                 |                            |                  |  |  |  |
|     | (a            | ) प्राथमिकता                                                                     | वोल्टता व              | न वक बूस्ट/buck     | -boost the  | primary volta   | ige                        |                  |  |  |  |
|     | (b            | (b) एक नम्ना वोल्टता की फीड बैक/feedback a sample voltage                        |                        |                     |             |                 |                            |                  |  |  |  |
|     | (c)           | (c) रिले द्वारा विभिन्न आउटपुट का स्विचिंग/switching different outputs by relays |                        |                     |             |                 |                            |                  |  |  |  |
|     | (d)           | ) उपर्युक्त में                                                                  | कोई नहीं               | none of the abo     | ive         |                 | 1                          | 9.               |  |  |  |
| 66  | . नि          | म्न आइसीयों व                                                                    | में एएनडी              | गैट किसमें अन्तरि   | र्मि है/Wi  | nich of the fol | lowing ICs contain         | AND gates?       |  |  |  |
|     | (a)           | 7400                                                                             |                        |                     | (b)         | 7402            | orning too comain          | NAD Bales I      |  |  |  |
|     | (c)           | 7404                                                                             |                        |                     | (d)         | 7408            |                            |                  |  |  |  |
| 67. | माइ           | इक्रोवेव वैंड में                                                                | उपग्रह के              | उपयोग के बिना र     | संचार रेंज  | की दरी बहत      | रूप में                    | पर निर्शन        |  |  |  |
|     | Car           | riie distarice                                                                   | range of c             | communication in    | n microwa   | ave band, wit   | hout using satellite       | es denends       |  |  |  |
|     | lan           | gely on                                                                          |                        |                     |             |                 | 9                          | oo, acponds      |  |  |  |
|     | (a)           | आवृत्ति/Frequ                                                                    | iency                  |                     |             |                 |                            |                  |  |  |  |
|     | (b)           | 3 dip/ricight of transmitting and receiving antenna                              |                        |                     |             |                 |                            |                  |  |  |  |
|     | (c)           | प्रसारण में                                                                      | उपयोगित                | माइलन का प्रव       | ार/Tyne     | of modulation   | on used in transmis        | inna             |  |  |  |
|     | (d)           | उपर्युक्त में व                                                                  | होई नहीं/              | None of the abo     | ve          | or modulation   | ni used in transmis        | ssion            |  |  |  |
| 68. | सीअ           | गरओ पैनल में                                                                     | अस्टिगमा               | टिसस निगंत्रण       |             | Din A           | लिए उपयोगित है/A           |                  |  |  |  |
|     | con           | trol on CRO p                                                                    | anel is us             | ed forco            | ntrol.      | ानयत्रण क       | लए उपयोगित है/A            | stigmatism       |  |  |  |
|     | (a)           | फोकस/ Focu                                                                       |                        |                     | (b)         | प्रदीसी/ brig   | lata                       |                  |  |  |  |
|     | (c)           | किरणगुंज की                                                                      | स्थिति/b               | eam position        | (d)         |                 | নানess<br>অ/trace rotation |                  |  |  |  |
| 69. | ८ आ           | T 20 20 20 20 20 20 20 20 20 20 20 20 20                                         | n Codes o              |                     |             |                 |                            |                  |  |  |  |
|     | resid         | stance of 5 oh                                                                   | MICKIN 30              | ) V डासा आपूात द्वा | रा संयोजि   | त है। 10 ओम     | धारा पार करने का प्रतिरं   | घ है।/The        |  |  |  |
|     | acro          | ss 10 ohm re:                                                                    | m and 10<br>sistance k | onm are connec      | cted in se  | eries with a 3  | V DC supply. Th            | e current        |  |  |  |
|     |               | 4 A                                                                              |                        |                     |             |                 |                            |                  |  |  |  |
|     | (a)           | 3.74                                                                             | (b)                    | 2 A                 | (c)         | 10 A            | (d) 8 A                    |                  |  |  |  |
| 70. | टीवी<br>defle | अभिग्राही में इ<br>cted by                                                       | लक्ट्रॉन बी            | म द्वार             | विक्षेपित   | F き/In TV red   | ceiver the electron        | beam is          |  |  |  |
|     | (a)           | विद्युत चुंबकीय                                                                  | विक्षेपण/              | Electromagnetic o   | eflection   |                 |                            |                  |  |  |  |
|     | (b)           | विद्युत स्यैतिक                                                                  | विक्षेपण/              | Electrostatic defle | ection      |                 |                            |                  |  |  |  |
|     | (c)           | दोनों में कोई ।                                                                  | क/Any o                | f the two           | 0000000     |                 |                            |                  |  |  |  |
|     |               | कोई नहीं/None                                                                    |                        |                     |             |                 |                            |                  |  |  |  |
|     |               |                                                                                  |                        |                     |             |                 |                            |                  |  |  |  |

| 71. | डीवीडी प्लेयर में द्वारा डिजिटाइसड सिग्नल को संयुक्त वीडियो सिग्नल के रूप में रूपांतरित                |                                                                                      |  |     |                       |  |
|-----|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|-----|-----------------------|--|
|     | किया जाता है/In a DVD player, digitised signals are converted into composite video signals by          |                                                                                      |  |     |                       |  |
|     | means of                                                                                               |                                                                                      |  |     |                       |  |
|     | (a)                                                                                                    | ADC                                                                                  |  | (b) | DAC                   |  |
|     | (c)                                                                                                    | संसूचक/Detector                                                                      |  | (d) | मिश्रक/Mixer          |  |
| 72. | रडार सिद्धांत में उपयोगित हैं/Radar principle is used in                                               |                                                                                      |  |     |                       |  |
|     | (a)                                                                                                    | (a) एयरकाफ्ट के संसूचन मैं/detection of aircraft                                     |  |     |                       |  |
|     | (b)                                                                                                    | ) टेलीफोनी/telephony                                                                 |  |     |                       |  |
|     | (c)                                                                                                    | (c) इलक्ट्रान माइक्रोस्कोप/electron microscope                                       |  |     |                       |  |
|     | (d)                                                                                                    | d) उपर्युक्त सभी/all of the above                                                    |  |     |                       |  |
| 73. | 0-50 A रेंज के एक अमीटर के लिए पूर्ण स्केल रीडिंग में ± 1% की परिशुद्धता है। मापित धारा 10 A है।       |                                                                                      |  |     |                       |  |
|     | मापित मूल्य में अनिश्चितता /An ammeter of 0-50 A range has an accuracy of ± 1% of full scale reading   |                                                                                      |  |     |                       |  |
|     | The current measured is 10 A. The uncertainty in measured value is                                     |                                                                                      |  |     |                       |  |
|     | (a)                                                                                                    | ± 2%                                                                                 |  | (b) | ± 2.5%                |  |
|     | (C)                                                                                                    | ± 4%                                                                                 |  | (d) | ± 5%                  |  |
| 74. | लो ।                                                                                                   | लो पास आरसी फिल्टर की कट ऑफ आवृति सूत्र द्वारा दिया जाता है/The cut off frequency of |  |     |                       |  |
|     | a low pass RC filter is given by the formula                                                           |                                                                                      |  |     |                       |  |
|     | (a)                                                                                                    | 1/(2πRC)                                                                             |  | (b) | $1/(2\pi(RC)^{0.5})$  |  |
|     | (c)                                                                                                    | $1/(4\pi^2 RC)$                                                                      |  | (d) | 1/(RC) <sup>0.5</sup> |  |
| 75. | 78XX शृंखला का आईसी वाल्टता नियामक में उपलब्ध है/78XX series of voltage regulator ICs are available in |                                                                                      |  |     |                       |  |
|     | (a)                                                                                                    | a) 2 पिन आईसी पैंकेज/2 pin IC package                                                |  |     |                       |  |
|     | (b)                                                                                                    | (b) 3 पिन आईसी पैकेज /3 pin IC package                                               |  |     |                       |  |
|     | (c)                                                                                                    |                                                                                      |  |     |                       |  |
|     | (d)                                                                                                    | 8 पिन आईसी पैकेज /8 pi                                                               |  |     |                       |  |
|     |                                                                                                        |                                                                                      |  |     |                       |  |
|     |                                                                                                        |                                                                                      |  |     |                       |  |